LangChain学习笔记—RAG(检索增强生成)

LangChain

LangChain是一个软件开发框架,可以更轻松地使用大型语言模型(LLM)创建应用程序。它是一个具有 Python 和 JavaScript 代码库的开源工具。LangChain 允许开发人员将 GPT-4 等 LLM 与外部数据相结合,为聊天机器人、代码理解、摘要等各种应用程序开辟了可能性。

LangChain模块

LangChain将其功能分组到以下模块中:

  • 模型
  • 提示
  • 代理
  • 记忆
  • 文档加载程序和索引
提示

        提示是指模型输入。在前面的部分中,您将提示硬编码为 LLM 和聊天模型。此技术不适用,因为在生产环境中不会收到硬编码的完整文本提示。相反,您将收到来自用户的简洁输入,您将希望将其转换为提示。

模型

LangChain支持三种类型的模型:

  • 大型语言模型
  • 聊天模型
  • 文本嵌入模型

链允许您同时运行多个LangChain模块。例如,使用链,您可以同时运行提示符和 LLM,从而避免了首先格式化 LLM 模型的提示,然后使用模型在单独的步骤中执行它。

LangChain支持三种主要类型的链:

  • 简单的 LLM 链
  • 顺序链
  • 定制链
代理

LangChain代理涉及LLM来执行以下步骤:

  1. 根据用户输入或其先前的输出确定要执行的操作。
  2. 执行操作。
  3. 观察输出。
  4. 重复前三个步骤,直到它尽其所能完成用户输入中定义的任务。

RAG Architecture

典型的 RAG 应用程序有两个主要组件:

  • 索引(Indexing)

用于从源获取数据并为其建立索引的管道。这通常发生在离线状态。

  • 提取和生成(Retriever and generation)

实际的 RAG 链,它在运行时接受用户查询并从索引中检索相关数据,然后将其传递给模型。

索引(Indexing)

  • Load

首先需要加载数据,通过DocumentLoaders完成

  • Split

Text splitters将large Documents分成更小的chunks。这对于索引数据和将其传递到模型都很有用,因为大块更难搜索并且不适合模型的有限上下文窗口。

  • Store

存储和索引我们的分割,这通常是使用 VectorStore 和 Embeddings 模型来完成的。

 

矢量数据库

Chroma 是一个用于构建具有嵌入的 AI 应用程序的数据库。

        数据量庞大的知识、新闻、文献、语料等先通过嵌入(embedding)算法转变为向量数据,然后存储在Chroma等向量数据库中。当用户在大模型输入问题后,将问题本身也embedding,转化为向量,在向量数据库中查找与之最匹配的相关知识,组成大模型的上下文,将其输入给大模型,最终返回大模型处理后的文本给用户,这种方式不仅降低大模型的计算量,提高响应速度,也降低成本,并避免了大模型的tokens限制,是一种简单高效的处理手段。 

主流的向量数据库对比如下所示:

向量数据库URLGitHub StarLanguage
chromahttps://github.com/chroma-core/chroma7.4KPython
milvushttps://github.com/milvus-io/milvus21.5KGo/Python/C++
pineconehttps://www.pinecone.io/
qdranthttps://github.com/qdrant/qdrant11.8KRust
typesensehttps://github.com/typesense/typesense12.9KC++
weaviatehttps://github.com/weaviate/weaviate6.9KGo

在这里我们使用chroma

提取和生成(Retrieval and generation)

  1. Retrieve:给定用户输入,使用检索器从存储中检索相关分割。
  2. GenerateChatModel / LLM 使用包含问题和检索到的数据的提示生成答案

 实例

import os
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
# Load, chunk and index the contents of the blog.
print("Starting..........")
os.environ['OPENAI_API_KEY'] ="sk-xxxxxxxx"
os.environ['OPENAI_BASE_URL'] ="https://api.chatanywhere.tech/v1"
print("Loading.....")
#loader = WebBaseLoader(
#    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
#    bs_kwargs=dict(
#        parse_only=bs4.SoupStrainer(
#            class_=("post-content", "post-title", "post-header")
#        )
#    ),
#)
loader = PyPDFLoader("example_data/计算机信息模型导论2024.pdf")
docs = loader.load()
print("Loadded....")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(),persist_directory="./vector_store")# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
print("RAG....")
llm = ChatOpenAI(model_name="gpt-3.5-turbo",base_url="https://api.chatanywhere.tech/v1", temperature=0)def format_docs(docs):return "\n\n".join(doc.page_content for doc in docs)rag_chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt| llm| StrOutputParser()
)
print(rag_chain.invoke("what is OPCUA 变量类型? 请中文回答"))
# cleanup
#vectorstore.delete_collection()

        计算机信息模型导论2024.pdf是我正在写的一本书。介绍计算机信息模型,其中包含了OPCUA 的基本知识。        

Chroma 矢量数据库默认是存储在内存中的。如果设置了永久存储目录的位置persist_directory,它会存放在指定的目录中。一旦文档的矢量数据存储在文件中,提问可以不需要每次读pdf文件,程序简化为:

import os
from langchain import hubfrom langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI,OpenAIEmbeddings# Load, chunk and index the contents of the blog.os.environ['OPENAI_API_KEY'] ="sk-xxxxxxxxx"
os.environ['OPENAI_BASE_URL'] ="https://api.chatanywhere.tech/v1"
embedding = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY'] )
vectorstore = Chroma(persist_directory="./vector_store",embedding_function=embedding)# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
print("RAG....")
llm = ChatOpenAI(model_name="gpt-3.5-turbo",base_url="https://api.chatanywhere.tech/v1", temperature=0)def format_docs(docs):return "\n\n".join(doc.page_content for doc in docs)rag_chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt| llm| StrOutputParser()
)
print(rag_chain.invoke("what is OPCUA 变量类型? 请中文回答"))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/593844.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

怎样把学浪购买的课程下载下来

如何把学浪已购买的课程下载下来?这里就教大家一个方法,利用一个工具轻轻松松把视频下载下来 这个工具我打包成压缩包了,有需要的自己取一下 链接:https://pan.baidu.com/s/1y7vcqILToULrYApxfEzj_Q?pwdkqvj 提取码:kqvj --来自百度网盘超级会员V1…

Cisco交换机安全配置

Cisco交换机安全配置 前提 我们以下命令一般都要先进入Config模式 S1> enable S1# conf t S1(config)#端口安全保护 禁用未使用的端口 以关闭fa0/1到fa0/24的端口为例 S1(config)# interface range fa0/1-24 S1(config-if-range)# shutdown缓解MAC地址表攻击 防止CAM…

【爬虫开发】爬虫从0到1全知识md笔记第3篇:数据提取概要,知识点【附代码文档】

爬虫开发从0到1全知识教程完整教程(附代码资料)主要内容讲述:爬虫课程概要,爬虫基础爬虫概述,,http协议复习。requests模块,requests模块1. requests模块介绍,2. response响应对象,3. requests模块发送请求,4. request…

【游戏逆向】逆向基础之发包函数和线程发包

网络游戏是需要服务器的,这样才能玩家之间,服务器和玩家之间进行通信。 所以,我们的很多动作,都是要向服务器发包的,那么我们只要能够锁定正确的发包函数,就能很容易的通过调用关系找到该动作的函数&…

【GEE实践应用】GEE下载遥感数据以及下载后在ArcGIS中的常见显示问题处理(以下载哨兵2号数据为例)

本期内容我们使用GEE进行遥感数据的下载,使用的相关代码如下所示,其中table是我们提前导入的下载遥感数据的研究区域的矢量边界数据。 var district table;var dsize district.size(); print(dsize);var district_geometry district.geometry();Map.…

基于卷积神经网络的中药识别(pytorch框架)【python源码+UI界面+前端界面+功能源码详解】

原作者链接:基于卷积神经网络的中药识别(pytorch框架)【python源码UI界面前端界面功能源码详解】_识别中药python-CSDN博客 //gitcode,gitee,飞桨,csdn,bilibili。几个有用网站,直接搜索即可,平…

软件质量保证计划书

1 概述 2 质量目标 3 项目基本情况 4 资源 4.1 人员 4.1.1 组织结构 4.1.2 职责 4.2 工具及设施 5 质量保证的主要工作 6 质量保证工作量估算 7 质量保证工作提交的产物 8 变更管理 9 评价标准 10 形成的记录 软件全资料获取进主页或者本文末个人名片直接获取。

keycloak - 鉴权VUE

目录 一、前言 1、背景 2、实验版本 二、开始干活 1、keycloak配置 a、创建领域(realms) b、创建客户端 c、创建用户、角色 2、vue代码 a、依赖 b、main.js 三、未解决的问题 目录 一、前言 1、背景 2、实验版本 二、开始干活 1、keycloak配置 a、创建领域(r…

大模型生成RAG评估数据集并计算hit_rate 和 mrr

文章目录 背景简介代码实现公开参考资料 背景 最近在做RAG评估的实验,需要一个RAG问答对的评估数据集。在网上没有找到好用的,于是便打算自己构建一个数据集。 简介 本文使用大模型自动生成RAG 问答数据集。使用BM25关键词作为检索器,然后…

WPS 不登录无法使用基本功能的解决办法

使用wps时,常常有个比较让人烦恼的事,在不登录的情况下,新建或者打开文档时,wps不让你使用其基本的功能,如设置字体等,相关界面变成灰色,这时Wps提示用户登录注册或登录,但我又不想登…

UTONMOS:AI+Web3+元宇宙数字化“三位一体”将触发经济新爆点

人工智能、元宇宙、Web3,被称为数字化的“三位一体”,如何看待这三大技术所扮演的角色? 3月24日,2024全球开发者先锋大会“数字化的三位一体——人工智能、元宇宙、Web3.0”论坛在上海漕河泾开发区举行,首次提出&…

【性能测试】接口测试各知识第2篇:学习目标,1. 理解接口的概念【附代码文档】

接口测试完整教程(附代码资料)主要内容讲述:接口测试,学习目标学习目标,2. 接口测试课程大纲,3. 接口学完样品,4. 学完课程,学到什么,5. 参考:,1. 理解接口的概念。学习目标,RESTFUL1. 理解接口的概念,2.什么是接口测试…