leetcode刷题-代码训练营-第7章-回溯算法1

回溯法模板

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

理解

 从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了

回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了

第77题. 组合

 理解

回溯代码

class Solution {
private:vector<vector<int>> result; // 存放符合条件结果的集合vector<int> path; // 用来存放符合条件结果void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.push_back(path);return;}for (int i = startIndex; i <= n; i++) {path.push_back(i); // 处理节点 backtracking(n, k, i + 1); // 递归path.pop_back(); // 回溯,撤销处理的节点}}
public:vector<vector<int>> combine(int n, int k) {result.clear(); // 可以不写path.clear();   // 可以不写backtracking(n, k, 1);return result;}
};

剪枝操作

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.push_back(path);return;}for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方path.push_back(i); // 处理节点backtracking(n, k, i + 1);path.pop_back(); // 回溯,撤销处理的节点}}
public:vector<vector<int>> combine(int n, int k) {backtracking(n, k, 1);return result;}
};

216.组合总和III

思路

回溯算法

class Solution {
private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果// targetSum:目标和,也就是题目中的n。// k:题目中要求k个数的集合。// sum:已经收集的元素的总和,也就是path里元素的总和。// startIndex:下一层for循环搜索的起始位置。void backtracking(int targetSum, int k, int sum, int startIndex) {if (path.size() == k) {if (sum == targetSum) result.push_back(path);return; // 如果path.size() == k 但sum != targetSum 直接返回}for (int i = startIndex; i <= 9; i++) {sum += i; // 处理path.push_back(i); // 处理backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯}}public:vector<vector<int>> combinationSum3(int k, int n) {result.clear(); // 可以不加path.clear();   // 可以不加backtracking(n, k, 0, 1);return result;}
};

剪枝操作

class Solution {
private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果void backtracking(int targetSum, int k, int sum, int startIndex) {if (sum > targetSum) { // 剪枝操作return; // 如果path.size() == k 但sum != targetSum 直接返回}if (path.size() == k) {if (sum == targetSum) result.push_back(path);return;}for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝sum += i; // 处理path.push_back(i); // 处理backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯}}public:vector<vector<int>> combinationSum3(int k, int n) {result.clear(); // 可以不加path.clear();   // 可以不加backtracking(n, k, 0, 1);return result;}
};

17.电话号码的字母组合

 39. 组合总和

思路

回溯法代码

// 版本一
class Solution {
private:const string letterMap[10] = {"", // 0"", // 1"abc", // 2"def", // 3"ghi", // 4"jkl", // 5"mno", // 6"pqrs", // 7"tuv", // 8"wxyz", // 9};
public:vector<string> result;string s;void backtracking(const string& digits, int index) {if (index == digits.size()) {result.push_back(s);return;}int digit = digits[index] - '0';        // 将index指向的数字转为intstring letters = letterMap[digit];      // 取数字对应的字符集for (int i = 0; i < letters.size(); i++) {s.push_back(letters[i]);            // 处理backtracking(digits, index + 1);    // 递归,注意index+1,一下层要处理下一个数字了s.pop_back();                       // 回溯}}vector<string> letterCombinations(string digits) {s.clear();result.clear();if (digits.size() == 0) {return result;}backtracking(digits, 0);return result;}
};

思路

回溯算法

// 版本一
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {if (sum > target) {return;}if (sum == target) {result.push_back(path);return;}for (int i = startIndex; i < candidates.size(); i++) {sum += candidates[i];path.push_back(candidates[i]);backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数sum -= candidates[i];path.pop_back();}}
public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {result.clear();path.clear();backtracking(candidates, target, 0, 0);return result;}
};

优化代码

 对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历

在求和问题中,排序之后加剪枝是常见的套路!

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {if (sum == target) {result.push_back(path);return;}// 如果 sum + candidates[i] > target 就终止遍历for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {sum += candidates[i];path.push_back(candidates[i]);backtracking(candidates, target, sum, i);sum -= candidates[i];path.pop_back();}}
public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {result.clear();path.clear();sort(candidates.begin(), candidates.end()); // 需要排序backtracking(candidates, target, 0, 0);return result;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/593870.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣108. 将有序数组转换为二叉搜索树

Problem: 108. 将有序数组转换为二叉搜索树 文章目录 题目描述思路复杂度Code 题目描述 思路 根据二叉搜索树中序遍历为一个有序序列的特点得到&#xff1a; 1.定义左右下标left&#xff0c;right分别指向有序序列的头尾&#xff1b; 2.每次取出left和right的中间节点mid&…

Lafida多目数据集实测

Lafida 数据集 paper&#xff1a;J. Imaging | Free Full-Text | LaFiDa—A Laserscanner Multi-Fisheye Camera Dataset 官网数据&#xff1a;https://www.ipf.kit.edu/english/projekt_cv_szenen.php 官网&#xff1a;KIT-IPF-Software and Datasets - LaFiDa 标定数据下载&…

位运算-191. 位1的个数- 136. 只出现一次的数字

位1的个数 已解答 简单 相关标签 相关企业 编写一个函数&#xff0c;输入是一个无符号整数&#xff08;以二进制串的形式&#xff09;&#xff0c;返回其二进制表达式中 设置位 的个数&#xff08;也被称为汉明重量&#xff09;。 示例 1&#xff1a; 输入&#xff1a;n 11 输…

【Unity每日一记】如何从0到1将特效图集制作成一个特效

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

HTTPS跟HTTP有区别吗?

HTTPS和HTTP的区别&#xff0c;白话一点说就是&#xff1a; 1. 安全程度&#xff1a; - HTTP&#xff1a;就像是你和朋友面对面聊天&#xff0c;说的话大家都能听见&#xff08;信息明文传输&#xff0c;容易被偷听&#xff09;。 - HTTPS&#xff1a;就像是你们俩戴着加密耳机…

Google视觉机器人超级汇总:从RT、RT-2到AutoRT、SARA-RT、RT-Trajectory

前言 随着对视觉语言机器人研究的深入&#xff0c;发现Google的工作很值得深挖&#xff0c;比如RT-2 ​想到很多工作都是站在Google的肩上做产品和应用&#xff0c;​Google真是科技进步的核心推动力&#xff0c;做了大量大模型的基础设施&#xff0c;服 故有了本文&#xf…

【Linux】网络基础常识{OSI七层模型/ TCP/IP / 端口号 /各种协议}

文章目录 1.网络常识1.0DHCP协议1. 1IP地址/MAC地址/ARP协议是什么&#xff1f;IP/MACARP&#xff1a;IP ⇒ MAC 1.2手机连接wifi的原理 SSID与BSSID手机连接wifiSSID与BSSID 1.3手机如何通过“数据/流量”上网&#xff1f;1.4电脑连接wifi的原理&#xff1f;电脑通过热点上网…

数据结构和算法:十大排序

排序算法 排序算法用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用&#xff0c;因为有序数据通常能够被更高效地查找、分析和处理。 排序算法中的数据类型可以是整数、浮点数、字符或字符串等。排序的判断规则可根据需求设定&#xff0c;如数字大小、字符 ASCII…

Docker 容器编排技术解析与实践

探索了容器编排技术的核心概念、工具和高级应用&#xff0c;包括 Docker Compose、Kubernetes 等主要平台及其高级功能如网络和存储管理、监控、安全等。此外&#xff0c;文章还探讨了这些技术在实际应用中的案例&#xff0c;提供了对未来趋势的洞见。 一、容器编排介绍 容器编…

基于Python的微博舆论分析,微博评论情感分析可视化系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

07-app端文章搜索

app端文章搜索 1) 今日内容介绍 1.1)App端搜索-效果图 1.2)今日内容 文章搜索 ElasticSearch环境搭建 索引库创建 文章搜索多条件复合查询 索引数据同步 搜索历史记录 Mongodb环境搭建 异步保存搜索历史 查看搜索历史列表 删除搜索历史 联想词查询 联想词的来源 联…

代码随想录算法训练营33期 第三十一天(补29) | 491. 非递减子序列、46. 全排列、47. 全排列 II

491. 非递减子序列 class Solution { public:vector<int> path;vector<vector<int>> result;void BackTracking(vector<int>& nums, int index){if(path.size()>2){result.push_back(path);}unordered_set<int> usedSet;for (int iindex…