数据结构:详解【树和二叉树】

1. 树的概念及结构(了解)

1.1 树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

1.2 树的结构
在这里插入图片描述

1.3 树与非树

在这里插入图片描述

1.4 树在实际中的运用(表示文件系统的目录树结构)

在这里插入图片描述

2. 与树的结构相关的概念

在这里插入图片描述
在这里插入图片描述

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6。
  • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点。
  • 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点。
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点。
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点。
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点。
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6。
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4。
  • 森林:由m(m>0)棵互不相交的多颗树的集合称为森林;(数据结构中的学习并查集本质就是一个森林)。

3. 二叉树的概念及结构

2.1 概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树右子树的二叉树组成。

2.2 二叉树的特点:
1.每个结点最多有两棵子树,即二叉树不存在度大于2的结点
2.二叉树的子树有左右之分,其子树的次序不能颠倒

2.3 两种特殊的二叉树
(1)满二叉树:
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2k -1 ,则它就是满二叉树。
(2)完全二叉树:
对于深度为K的,有n个结点的二叉树,如果满足前K-1层都是满的,最后一层不满,但最后一层从左到右都是连续的。则这个二叉树就是完全二叉树。
在这里插入图片描述

(3)对这两种二叉树的有关数据的推导

在这里插入图片描述

4. 二叉树的性质

  • 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点
  • 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1
  • 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2+1
  • 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h = logN(以2为底)。

5. 二叉树的存储

5.1 顺序存储 :
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树

在这里插入图片描述

5.2 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/c24bc02ae45b457aba2121bb692246bc.png

6. 二叉树的前,中,后序遍历

要实现前,中,后序遍历,我们需要再来理解二叉树的结构。把任一一棵二叉树分为三部分:根节点,左子树,右子树。

我们这里先拿一棵简单的二叉树举例:
在这里插入图片描述

6.1 二叉树的前序(先根)遍历:
根,左子树,右子树
对应上图为:A B D NULL NULL E NULL NULL C NULL NULL。

6.2 二叉树的中序(中根)遍历:
左子树,根,右子树
对应上图为:NULL D NULL B NULL E NULL A NULL C NULL。

6.3 二叉树的后序(后根)遍历:
左子树,右子树,根
对应上图为:NULL NULL D NULL NULL E B NULL NULL C A。

7. 有关二叉树的常用功能的实现

7.1 三序(深度优先)遍历的代码实现

这里我们需要用到分治算法: 分而治之,把大问题分成类似的子问题,子问题再分成子问题……直到子问题不可再分割。实际上就是递归思想

7.2 根据上图代码实现如下:

#define _CRT_SECURE_NO_WARNINGS #include <stdio.h>
#include <stdlib.h>typedef char BTDataType;//定义二叉树的结构
typedef struct BinaryTreeNode
{BTDataType data;//存放的数据struct BinaryTreeNode* left;//左子树struct BinaryTreeNode* right;//右子树
}BTNode;//前序遍历
void PrevOrder(BTNode* root)//根节点
{if (root == NULL){printf("NULL ");return;}printf("%c ", root->data);PrevOrder(root->left);PrevOrder(root->right);
}//中序遍历
void InOrder(BTNode* root)//根节点
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);}//后序遍历
void PostOrder(BTNode* root)//根节点
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%c ", root->data);}void TreeTest()
{//1.开辟节点和初始化BTNode* A = (BTNode*)malloc(sizeof(BTDataType));if (A == NULL){perror("malloc fail\n");return;}A->data = 'A';A->left = NULL;A->right = NULL;BTNode* B = (BTNode*)malloc(sizeof(BTDataType));if (B == NULL){perror("malloc fail\n");return;}B->data = 'B';B->left = NULL;B->right = NULL;BTNode* C = (BTNode*)malloc(sizeof(BTDataType));if (C == NULL){perror("malloc fail\n");return;}C->data = 'C';C->left = NULL;C->right = NULL;BTNode* D = (BTNode*)malloc(sizeof(BTDataType));if (D == NULL){perror("malloc fail\n");return;}D->data = 'D';D->left = NULL;D->right = NULL;BTNode* E = (BTNode*)malloc(sizeof(BTDataType));if (E == NULL){perror("malloc fail\n");return;}E->data = 'E';E->left = NULL;E->right = NULL;//2.链接各个节点A->left = B;A->right = C;B->left = D;B->right = E;//3.进行输出PrevOrder(A);printf("\n");InOrder(A);printf("\n");PostOrder(A);printf("\n");
}int main()
{TreeTest();return 0;
}

输出结果与我们分析的相同:

在这里插入图片描述

7.22 前序函数递归展开图:
![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/e81c18c342764d33a3d4497b7a349d03.png](https://img-blog.csdnimg.cn/direct/5021db310f0b46a5a506abe96959af6d.png
中序和后续的递归展开图类似,读者自行分析。

7.3 计算一棵二叉树的总节点数

方法 1:遍历递归计数,定义局部变量size,传地址计数

代码实现如下:


void TreeSize(BTNode* root,int *psize)
{if (root == NULL){return;}else{(*psize)++;}TreeSize(root->left, psize);TreeSize(root->right, psize);}void TreeTest()
{......//续上上文的代码和图int Asize = 0;TreeSize(A, &Asize);printf("Asize:%d\n", Asize);int Bsize = 0;TreeSize(B, &Bsize);printf("Bsize:%d\n", Bsize);}

方法2:分治思想,递归

代码实现如下:

int TreeSize(BTNode* root)
{return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}void TreeTest()
{......//续上上文的代码和图printf("Asize:%d\n",TreeSize(A) );printf("Bsize:%d\n",TreeSize(B) );}

递归调用可抽象为:

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/3b543b40b6fe42139d9ea36bc59e7b5d.png

两种方法的输出结果均是:
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/c6d745f809604d9ba7e3a7d4f23cc8ca.png
7.4 计算一棵二叉树中叶子节点的个数
利用分治思想,后序遍历。

代码实现如下:

int TreeLeafSize(BTNode* root)
{if (root == NULL)return 0;//是叶节点if (root->left == NULL && root->right == NULL)return 1;//左边的叶节点+右边的叶节点return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}void TreeTest()
{......//续上上文的代码和图printf("LeafSize:%d\n",TreeLeafSize(A) );
}

输出结果是:
在这里插入图片描述

7.5 计算二叉树的最大深度

利用分治思想,后序遍历,当根节点为NULL时,返回0当根节点不为NULL时,分解子问题,先求左右子树的深度,该节点的深度 = 左右子树更大的那一个+1

代码实现如下:

int MaxDepth(BTNode* root)
{if (root == NULL)return 0 ;int leftdepth = MaxDepth(root->left);int rightdepth = MaxDepth(root->right);return leftdepth > rightdepth ? leftdepth + 1 : rightdepth + 1;}void TreeTest()
{......//续上上文的代码和图printf("MaxDepth:%d\n",MaxDepth(A) );
}

输出结果是:

在这里插入图片描述
7.6 销毁二叉树
销毁二叉树不能从根节点开始销毁,不然会找不到其他节点。要用后序遍历,先左节点,右节点,最后根节点。

代码实现如下:

void DestoryTree(BTNode* root)
{if (root == NULL)return;DestoryTree(root->left);DestoryTree(root->right);free(root);root = NULL;
}

8. 二叉树的层序(广度优先)遍历

8.1 什么是层序遍历

设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

在这里插入图片描述

8.2 层序遍历的代码实现

要实现二叉树的层序遍历,我们需要借助队列先进先出的特性。其核心思想是:上一层的一个节点出的时候带其下一层的子节点进

画图解释如下:
在这里插入图片描述

代码实现如下:

void LealOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);//取出队头QueuePop(&q);printf("%c ", front->data);if (front->left)//左不为空,入左节点QueuePush(&q, front->left);if (front->right)//右不为空,入右节点QueuePush(&q, front->right);}printf("\n");QueueDestory(&q);
}void TreeTest()
{......//续上上文的代码和图LealOrder(A);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/594016.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小林coding图解计算机网络|基础篇02|键入网址到网页显示,期间发生了什么?

小林coding网站通道&#xff1a;入口 本篇文章摘抄应付面试的重点内容&#xff0c;详细内容还请移步&#xff1a;小林coding网站通道 文章目录 孤单小弟——HTTP真实地址查询——DNS指南好帮手——协议栈可靠传输——TCP远程定位——IP两点传输——MAC出口——网卡送别者——交…

一文搞懂 ThreadLocal

简介 ThreadLocal存取的数据&#xff0c;总是与当前线程相关&#xff0c;也就是说&#xff0c;JVM 为每个运行的线程&#xff0c;绑定了私有的本地实例存取空间&#xff0c;从而为多线程环境常出现的并发访问问题提供了一种隔离机制。 ThreadLocal的作用是提供线程内的局部变…

突破编程_前端_ACE编辑器(选中区域、跳转行以及点击事件)

1 选中区域 要在 ACE 编辑器中选中一个区域&#xff0c;通常需要使用编辑器的 selection 对象。 以下是一个简单的示例&#xff0c;展示了如何使用 ACE 编辑器的 API 来选中一个特定的区域&#xff1a; 初始化 ACE 编辑器&#xff1a;首先&#xff0c;需要在页面上初始化 AC…

arm开发板移植工具mkfs.ext4

文章目录 一、前言二、手动安装e2fsprogs1、下载源码包2、解压源码3、配置4、编译5、安装 三、移植四、验证五、总结 一、前言 在buildroot菜单中&#xff0c;可以通过勾选e2fsprogs工具来安装mkfs.ext4工具&#xff1a; Target packages -> Filesystem and flash utilit…

为移动云数据实现基于可撤销属性组的加密:多代理辅助方法

参考文献为2023年发表的Achieving Revocable Attribute Group-Based Encryption for Mobile Cloud Data: A Multi-Proxy Assisted Approach 动机 对于目前的代理辅助的可撤销基于属性加密来说&#xff0c;外包解密存一些缺点。当多个具有相同属性的用户请求外包转换时&#x…

整合Mybatis(Spring学习笔记十二)

一、导入相关的包 junit 包 Mybatis包 mysql数据库包 Spring相关的包 Aop相关的包 Mybatis-Spring包&#xff08;现在就来学这个&#xff09; 提示jdk版本不一致的朋友记得 jdk8只支持spring到5.x 所以如果导入的spring(spring-we…

家具木材选择,橡胶木和松木哪个好?福州中宅装饰,福州装修

装修中&#xff0c;选择橡胶木和松木作为家具材料是一个常见的选择。然而&#xff0c;对于哪种木材更适合做家具这个问题&#xff0c;需要从多个方面进行分析和比较。 首先&#xff0c;让我们来看看 橡 胶 木。橡胶木通常被认为是一种坚硬和耐用的木材&#xff0c;这使得它非常…

【快速解决】python缺少了PyQt5模块的QtMultimedia子模块

目录 问题描述 问题原因 解决方法 成功示范 问题描述 Traceback (most recent call last): File "d:\桌面\python项目\DesktopWords-master\main.py", line 4, in <module> from PyQt5.QtMultimedia import QMediaPlayer, QMediaContent ModuleNotFoundEr…

Jupyter IPython帮助文档及其魔法命令

1.IPython 的帮助文档 使用 help() 使用 ? 使用 &#xff1f;&#xff1f; tab 自动补全 shift tab 查看参数和函数说明 2.运行外部 Python 文件 使用下面命令运行外部 Python 文件&#xff08;默认是当前目录&#xff0c;也可以使用绝对路径&#xff09; %run *.py …

Spring-IoC 基于注解

基于xml方法见&#xff1a;http://t.csdnimg.cn/dir8j 注解是代码中的一种特殊标记&#xff0c;可以在编译、类加载和运行时被读取&#xff0c;执行相应的处理&#xff0c;简化 Spring的 XML配置。 格式&#xff1a;注解(属性1"属性值1",...) 可以加在类上…

Redis -- 缓存穿透问题解决思路

缓存穿透 &#xff1a;缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在&#xff0c;这样缓存永远不会生效&#xff0c;这些请求都会打到数据库。 常见的解决方案有两种&#xff1a; 缓存空对象 优点&#xff1a;实现简单&#xff0c;维护方便 缺点&#xff1a; 额外…

00-JAVA基础-动态编译

动态编译 JAVA 6 引入了动态编译机制。Java 动态编译是指在运行时将Java源代码编译成可执行的字节码。这通常使用Java的内置编译器API javax.tools.JavaCompiler 来实现。 动态编译的应用场景 可以做一个浏览器编写java代码&#xff0c;上传服务器编译和运行的在线测评系统服…