分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别

目录

    • 分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别
      • 分类效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别,经全连接层、softmax层和分类层后将高维特征映射为最终预测结果。
2.数据输入多个特征,输出8个类别,主程序运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

Multihead Attention 多头注意力机制:注意力机制是一种用于在序列数据中学习对不同位置的关注程度的模型。多头注意力机制扩展了传统的注意力机制,允许模型在不同的注意力头上学习不同的关注权重。在多特征分类预测中,多头注意力机制可以用于对不同特征之间的关联进行建模,从而提高分类性能。堆叠3层的TCN残差模块以获取更大范围的输入序列感受野,同时避免出现梯度爆炸和梯度消失等问题每个残差块具有相同的内核大小k,其扩张因子D分别为1、2、4。

模型描述

在这里插入图片描述

BiGRU获取到TCN处理后的数据序列,它将正反两个方向的GRU层连接起来,一个按从前往后(正向)处理输入序列,另一个反向处理。通过这种方式,BiGRU可以更加完整地探索特征的依赖关系,获取上下文关联多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 设置训练选项
options = trainingOptions('adam', ...            % 使用Adam优化器'MiniBatchSize', 15, ...                     % 每个迭代的迷你批次大小'MaxEpochs', 5, ...                          % 最大训练迭代次数'InitialLearnRate', 0.001, ...               % 初始学习率'Shuffle', 'every-epoch', ...                % 每个迭代都对数据进行洗牌'Verbose', false, ...                        % 不显示训练过程中的详细输出'Plots', 'training-progress');               % 显示训练进度图

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/595918.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电商-广告投放效果分析(KMeans聚类、数据分析-pyhton数据分析

电商-广告投放效果分析(KMeans聚类、数据分析) 文章目录 电商-广告投放效果分析(KMeans聚类、数据分析)项目介绍数据数据维度概况数据13个维度介绍 导入库,加载数据数据审查相关性分析数据处理建立模型聚类结果特征分析…

网站SSL证书是什么?有什么用处?

SSL证书是一种数字证书,主要用于保障互联网通信过程中的信息安全,特别是涉及敏感信息(如个人身份、金融交易数据、登录凭据等)的在线传输。以下是对SSL证书从原理、作用等方面进行的简单介绍: 原理: 1. 公…

WordPress建站教程:10步快速搭建个人网站

WordPress是一个广泛使用的内容管理系统(CMS),凭借其用户友好的界面和大量可定制的主题和插件,为WordPress 提供了多功能性和灵活性,可用于创建各种类型的网站,包括个人博客、B2B企业网站、B2C外贸网站等&a…

python小练习(ps:可评论区讨论)

1. (单选题)海龟初始坐标为(0,0),让海龟往坐标原点后方移动200像素的语句是 A. turtle.penup(200)B. turtle.fd(200)C. turtle.goto(200)D. turtle.bk(200) 2. (单选题)改变海龟画笔尺寸的是 A. turtle.penwidth()B. turtle.pen…

接口和抽象类的综合案例

题目要求: 代码框架: 代码实现: person类: package www.jsu.com;public class Person {private String name;private int age;public Person() {}public Person(String name, int age) {this.name name;this.age age;}public …

C++ | Leetcode C++题解之第12题整数转罗马数字

题目: 题解: const string thousands[] {"", "M", "MM", "MMM"}; const string hundreds[] {"", "C", "CC", "CCC", "CD", "D", "DC&qu…

嵌入式系统初学者指南

什么是嵌入式系统? 嵌入式系统是一种独立的、基于微处理器的计算机系统。您可以将其视为大型系统的一部分的微型计算机。如今,从洗碗机到波音 747,几乎所有“电子”产品内部都有嵌入式系统。但是,嵌入式系统与笔记本电脑或手机不…

Minikube本地搭建单节点Kubernetes集群

1、什么是 Minikube Minikube 是一个开源工具,旨在为开发者提供一种便捷的方式在本地环境中搭建单节点的 Kubernetes 集群。它主要用于开发、测试和学习 Kubernetes 应用程序,无需依赖大型的硬件资源或复杂的多节点集群配置。minikube 使用轻量级虚拟化技…

ES10 学习

文章目录 1. Object.fromEntries()2. trimStart() 和 trimEnd()3. 数组的flat() 和flatMap()4. Symbol 对象的description 属性5. try ... catch(e){} 1. Object.fromEntries() Object.fromEntries() 方法允许你轻松地将键 值对列表转换为对象 let arr [["name",&qu…

深入浅出 -- 系统架构之负载均衡Nginx反向代理

一、Nginx反向代理-负载均衡 首先通过SpringBootFreemarker快速搭建一个WEB项目:springboot-web-nginx,然后在该项目中,创建一个IndexNginxController.java文件,逻辑如下: Controller public class IndexNginxControl…

基于Unet的BraTS 3d 脑肿瘤医学图像分割,从nii.gz文件中切分出2D图片数据

1、前言 3D图像分割一直是医疗领域的难题,在这方面nnunet已经成为了标杆,不过nnunet教程较少,本人之前跑了好久,一直目录报错、格式报错,反正哪里都是报错等等。并且,nnunet对于硬件的要求很高&#xff0c…

dcm文件数据学习

simpleITK读取数据 import SimpleITK as sitk import numpy as np import matplotlib.pyplot as plt base_path "/Users/yxk/Desktop/test/" image sitk.ReadImage(base_path"000000.dcm") # type(image) <class SimpleITK.SimpleITK.Image> imag…