序列超图的下一项推荐 笔记

1 Title

        Next-item Recommendation with Sequential Hypergraphs(Jianling Wang、Kaize Ding、Liangjie Hong、Huan Liu、James Caverlee)【SIGIR 2020】

2 Conclusion

       This study explores the dynamic meaning of items in realworld scenarios and propose a novel next-item recommendation framework empowered by sequential hypergraphs to incorporate the short-term item correlations for dynamic item embedding. With the stacking of hypergraph convolution networks, a residual gating and the fusion layer, the proposed model is able to provide more accurate modeling of user preferences, leading to improved performance compared to the state-of-the-art in predicting user’s next action for both ecommerce (Amazon and Etsy) and information sharing platform (Goodreads).

3 Good Sentences

        1、A critical issue is how items are treated in such models. Specifically, for a certain time period in next-item recommendation, we adopt the view that the meaning of an item can be revealed by the correlations defined by user interactions in the short term.(The most important problem of this study wants to solve)
        2、However, it is non-trivial to extract expressive item semantics the item-correlation hypergraph. On the one hand, the item correlations encoded by the hyperedges are no longer dyadic (pairwise), but rather triadic, tetradic or of a higher-order,on the other hand, the item semantics could propagate over multiple hops.(Why choose HyperGraph to connect character of users and items)
        3、In summary, relationships between items are changing from the long-term perspective, leading to the change in the semantic meanings of items. Thus we are motivated to exploit the short-term correlations between items while modeling their dynamic patterns for next-item recommendation.(The motivation of this study)


本文提出了HyperRec,这是一个具有顺序超图的新颖端到端框架,以增强下一项推荐。

HyperRec根据时间戳截断用户交互,以构建一系列超图

HYPERREC

HyperRec是一个端到端下一项推荐框架,该框架由顺序超图授权,可以在对随时间和跨用户的动态建模时合并短期项相关性。

问题定义:

        使用集合U来表示N个用户,集合I来表示P个items,集合Q来表示不同的时间戳T,每个t相当于一段period,对于每个用户,按照时间顺序对用户u与之交互的项目列表进行排序,比如L^u=\left \{ \left ( i^u_1,t_1^u \right ),\left ( i^u_2,t_2^u \right ).....\left ( i^u_{|L^u|},t_{|L^u|}^u \right ) \right \}        ,每个小括号表示t时刻用户u与item i进行了交互。项目以一组静态潜在嵌入E=[e_1,e_2.....e_p]开始,其中每一个都是与项目ID相关联的可训练嵌入,但是对于不同用户在不同时间戳不变,下一个项目推荐的目标是预测𝑢在L_u之后会感兴趣的项目。

Sequential Hypergraphs 

        由于用户在短时间内购买的物品是相互关联的,因此在它们之间定义适当的联系至关重要。超图可以利用直接和高阶连接来提取项目之间的短期相关性。同时,一个项目不应该在不同时期被视为离散的,因为它过去的特征可以暗示它未来的特征。

        Short-term Hypergraphs:

                为了捕捉不同时间段的项目相关性,可以基于时间戳将用户-项目交互分成多个子集。G=\left \{ G^{t_1} ,G^{t_2}......G^{t_Q}\right \}代表一系列的超图,而G^{t_n}=\left \{ V^{t_n},\varepsilon ^{t_n},W^{t_n},H^{t_n} \right \}是基于时间段t_n内发生的所有用户-项目交互而构建,V属于I,是节点集,代表时间段内的交互items,\varepsilon属于U,是超边集,代表时间段内交互的users。H是V和\varepsilon的关联矩阵,当超边与节点相关联的时候,H=1否则H=0,W_{\varepsilon \varepsilon }是代表超边\varepsilon权重的对角矩阵。D和B分别代表节点和超边的度矩阵。

Hypergraph Convolution Network (HGCN):看这个[1901.08150] Hypergraph Convolution and Hypergraph Attention (arxiv.org)

简单来说, 超图上的卷积操作可以定义如下:

        \tau代表激活函数(本文采用Relu)P^0表示初始层与第1层之间的可训练权矩阵。然后加入归一化并且转为矩阵表示的形式:

f(\cdot )表示一个超图卷积层用它的一跳邻居更新每个节点的操作。
可以堆叠多个卷积层来递归聚合超图中高阶邻居的信息。在这种超图卷积网络(HGCN)中,𝐿𝑡层的输出可计算为:

Residual Gating:

        为了将前一个时间段的残差信息传播到未来,引入了残差门控,tn时刻第i个项目的初始嵌入可以被表示为:

W_RZ_R为门的变换矩阵和矢量,\sigma是tanh,x_i^{t_n,0}表示在tn时刻之前的第i个item来自最近的超图的动态嵌入,如果之前i没有出现过,那么

Dynamic User Modeling

       Short-term User Intent:

                以聚合每个超边上的动态节点嵌入,以通过以下操作推断每个用户的短期意图。

        Fusion Layer       

                生成用户𝑢和物品𝑖之间的在t_n时刻的交互表示:

e_ix_i^{t_n,L}分别代表项目的静态和动态嵌入,u_u^{t_n}是用户短期意图生成的向量,W𝐹和z是对应的变换矩阵和向量

        Self-attention

                采用自我关注作为基本模型来捕获交互序列中的动态模式      

Preference Prediction:

        预测用户对项目的偏好时,应该同时考虑动态项目嵌入和静态项目嵌入:  

最终损失函数:,𝛿是Sigmoid函数,||\theta ||^2代表L2范式,λ是权重。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/596137.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA IO流学习

File类: File类是java.io包中很重要的一个类 File类的对象可以代表一个文件或者目录,可以修改文件大小、文件最后修改日期、文件名等 File对象不能操作文件的具体数据,即不能对文件进行读和写的操作 File的构造方法: File&…

并查集学习(836. 合并集合 + 837. 连通块中点的数量)

//得先加集合个数再合并!!!!!!!!! 核心代码: int find(int x){//返回父节点if(x ! p[x]) {p[x] find(p[x]);//路径压缩 } //孩子不等于爸爸,就…

Pytorch转onnx

pytorch 转 onnx 模型需要函数 torch.onnx.export。 def export(model: Union[torch.nn.Module, torch.jit.ScriptModule, torch.jit.ScriptFunction],args: Union[Tuple[Any, ...], torch.Tensor],f: Union[str, io.BytesIO],export_params: bool True,verbose: bool False…

【QT+QGIS跨平台编译】056:【pdal_json_schema+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

点击查看专栏目录 文章目录 一、pdal_json_schema介绍二、pdal下载三、文件分析四、pro文件五、编译实践一、pdal_json_schema介绍 pdal_json_schema 是与 PDAL(Point Data Abstraction Library)相关的 JSON 模式文件。PDAL 是一个用于处理和分析点云数据的开源库。JSON 模式…

DHCP-PXE

Dynamic Host Configuration Protocol 动态主机配置协议 1.Selinux 调试为Permission 防火墙配置 搭建DHCP的主机必须有一个静态地址,提前配置好 安装DHCP软件 服务名为dhcpd DHCP地址分配四次会话, DISCOVERY发现 OFFER 提供 REQUEST 回应 A…

5G网络架构及技术(二):OFDM一

ToDo: 等把这些讲义看完后得单开一个文章整理思维导图   该部分由于内容比较重要,OFDM是5G物理层的基础,但学习时直接跳到5G OFDM去看它的那些参数设置感觉没什么意义,还得从发展的角度进行学习,先从最先用到OFDM的WiFi协议开始…

WCH恒沁单片机-CH32V307学习记录2----FreeRTOS移植

RISC-V 单片机 FreeRTOS 移植 前面用了 5 篇博客详细介绍了 FreeRTOS 在 ARM Cortex-M3 MCU 上是如何运行的。 FreeRTOS从代码层面进行原理分析系列 现在我直接用之前的 RISC-V MCU 开发板子(CH32V307VCT6)再次对 FreeRTOS 进行移植,其实也…

【C语言自定义类型之----结构体,联合体和枚举】

一.结构体 1.结构体类型的声明 srruct tag {nemer-list;//成员列表 }varible-list;//变量列表结构体在声明的时候,可以不完全声明。 例如:描述一个学生 struct stu {char name[20];//名字int age;//年龄char sex[20];//性别 };//分号不能省略2.结构体…

C语言实现快速排序算法

1. 什么是快速排序算法 快速排序的核心思想是通过分治法(Divide and Conquer)来实现排序。 算法的基本步骤是: 1. 选择一个基准值(通常是数组中的某个元素),将数组分成两部分,使得左边的部分所有元素都小于…

Open CASCADE学习|在给定的TopoDS_Shape中查找与特定顶点 V 对应的TopoDS_Edge编号

enum TopAbs_ShapeEnum{TopAbs_COMPOUND,TopAbs_COMPSOLID,TopAbs_SOLID,TopAbs_SHELL,TopAbs_FACE,TopAbs_WIRE,TopAbs_EDGE,TopAbs_VERTEX,TopAbs_SHAPE}; 这段代码定义了一个名为 TopAbs_ShapeEnum 的枚举类型,它包含了表示不同几何形状类型的常量。这些常量通常…

刷题之Leetcode283题(超级详细)

283.移动零 283. 移动零https://leetcode.cn/problems/move-zeroes/ 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nu…

【了解下Oracle】

🌈个人主页:程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…