CNN成长路:从AlexNet到EfficientNet(01)

一、说明

        在 10年的深度学习中,进步是多么迅速!早在 2012 年,Alexnet 在 ImageNet 上的准确率就达到了 63.3% 的 Top-1。现在,我们超过90%的EfficientNet架构和师生训练(teacher-student)。

        如果我们在 Imagenet 上绘制所有报告作品的准确性,我们会得到这样的结果:

图像分类-绘图图像网

来源:Papers with Code - Imagenet Benchmark

在本文中,我们将重点介绍卷积神经网络(CNN)架构的演变。我们将专注于基本原则,而不是报告简单的数字。为了提供另一种视觉概览,可以在单个图像中捕获2018年之前表现最佳的CNN:

深度学习-架构-情节-2018

截至 2018 年的架构概述。资料来源:Simone Bianco et al. 2018

不要惊慌失措。所有描述的体系结构都基于我们将要描述的概念。

请注意,每秒浮点运算数 (FLOP) 表示模型的复杂性,而在垂直轴上,我们有 Imagenet 精度。圆的半径表示参数的数量。

从上图中可以看出,更多的参数并不总是能带来更好的准确性。我们将尝试对CNN进行更广泛的思考,看看为什么这是正确的。

如果您想从头开始了解卷积的工作原理,请推荐 Andrew 的 Ng 课程。

二、第一阶段:CNN架构的递进

2.1 术语解释

        但首先,我们必须定义一些术语:

  • 更宽的网络意味着卷积层中更多的特征图(过滤器)

  • 更深的网络意味着更多的卷积层

  • 具有更高分辨率的网络意味着它处理具有更大宽度和深度(空间分辨率)的输入图像。这样,生成的特征图将具有更高的空间维度。

体系结构缩放类型

架构扩展。来源:谭明兴,Quoc V. Le 2019

架构工程就是关于扩展的。我们将彻底使用这些术语,因此在继续之前请务必理解它们。

2.2 AlexNet: ImageNet Classification with Deep Convolutional Neural Networks (2012)

        Alexnet [1] 由 5 个从 11x11 内核开始的卷积层组成。它是第一个采用最大池化层、ReLu 激活函数和 3 个巨大线性层的 dropout 的架构。该网络用于具有 1000 个可能类的图像分类,这在当时是疯狂的。现在,您可以在 35 行 PyTorch 代码中实现它:

class AlexNet(nn.Module):def __init__(self, num_classes: int = 1000) -> None:super(AlexNet, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(64, 192, kernel_size=5, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(192, 384, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),)self.avgpool = nn.AdaptiveAvgPool2d((6, 6))self.classifier = nn.Sequential(nn.Dropout(),nn.Linear(256 * 6 * 6, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Linear(4096, num_classes),)def forward(self, x: torch.Tensor) -> torch.Tensor:x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x

        这是第一个在 Imagenet 上成功训练的卷积模型,当时在 CUDA 中实现这样的模型要困难得多。Dropout 在巨大的线性变换中大量使用,以避免过度拟合。在 2015-2016 年自动微分出现之前,在 GPU 上实现反向传播需要几个月的时间。

2.3 VGG (2014)

        著名的论文“用于大规模图像识别的非常深度卷积网络”[2]使深度一词病毒式传播。这是第一项提供不可否认证据的研究,证明简单地添加更多层可以提高性能。尽管如此,这一假设在一定程度上是正确的。为此,他们只使用3x3内核,而不是AlexNet。该架构使用 224 × 224 个 RGB 图像进行训练。

        主要原理是一叠三3×3 转换层类似于单个7×7 层。甚至可能更好!因为它们在两者之间使用三个非线性激活(而不是一个),这使得函数更具鉴别性。

        其次,这种设计减少了参数的数量。具体来说,您需要3*(3^2) C^2= 27 \times C^2 权重,与7×7 需要的转换层(1*72)C^2=49C^2  参数(增加 81%)。

        直观地,它可以被视为对7×7 转换过滤器,限制它们具有 3x3 非线性分解。最后,这是规范化开始成为一个相当成问题的架构。

        尽管如此,预训练的VGG仍然用于生成对抗网络中的特征匹配损失,以及神经风格转移和特征可视化。

        以我的拙见,检查凸网相对于输入的特征非常有趣,如以下视频所示:

        最后,在Alexnet旁边进行视觉比较:

斯坦福-讲座-VGG-vs-Alexnet

来源:斯坦福大学2017年深度学习讲座:CNN架构

2.4 InceptionNet/GoogleNet (2014)

        在VGG之后,Christian Szegedy等人的论文“Go Deep with Convolutions”[3]是一个巨大的突破。

        动机:增加深度(层数)并不是使模型变大的唯一方法。如何增加网络的深度和宽度,同时将计算保持在恒定的水平?

        这一次的灵感来自人类视觉系统,其中信息在多个尺度上进行处理,然后在本地聚合[3]。如何在不发生记忆爆炸的情况下实现这一目标?

        答案是1×1 卷 积!主要目的是通过减少每个卷积块的输出通道来减小尺寸。然后我们可以处理具有不同内核大小的输入。只要填充输出,它就与输入相同。

        要找到具有单步幅且无扩张的合适填充,请填充p和内核k被定义为out=in(输入和输出空间调光):

        out=in+2*p-k+1,这意味着p=(k-1)/2..在 Keras 中,您只需指定 padding='same'。这样,我们可以连接与不同内核卷积的特征。

        然后我们需要1×1 卷积层将特征“投影”到更少的通道,以赢得计算能力。有了这些额外的资源,我们可以添加更多的层。实际上,1×1 convs 的工作方式类似于低维嵌入。

有关 1x1 转换的快速概述,请推荐来自著名 Coursera 课程的以下视频:

        这反过来又允许通过使用Inception模块不仅增加深度,而且增加著名的GoogleNet的宽度。核心构建块称为 inception 模块,如下所示:

初始模块

       

        整个架构被称为GoogLeNet或InceptionNet。从本质上讲,作者声称他们试图用正常的密集层近似稀疏的凸网(如图所示)。

        为什么?因为他们相信只有少数神经元是有效的。这符合Hebbian原则:“一起放电的神经元,连接在一起”。

        此外它使用不同内核大小的卷积(5×55×5,3×33×3,1×11×1) 以捕获多个比例下的细节.

通常,对于驻留在全局的信息,首选较大的内核,对于本地分发的信息,首选较小的内核。

        此外1×1 卷积用于在计算成本高昂的卷积(3×3 和 5×5)之前计算约简。

        InceptionNet/GoogLeNet架构由9个堆叠在一起的初始模块组成,其间有最大池化层(将空间维度减半)。它由 22 层组成(27 层带有池化层)。它在上次启动模块之后使用全局平均池化。

        我写了一个非常简单的 Inception 块实现,可能会澄清一些事情:

import torch
import torch.nn as nnclass InceptionModule(nn.Module):def __init__(self, in_channels, out_channels):super(InceptionModule, self).__init__()relu = nn.ReLU()self.branch1 = nn.Sequential(nn.Conv2d(in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0),relu)conv3_1 = nn.Conv2d(in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)conv3_3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)self.branch2 = nn.Sequential(conv3_1, conv3_3,relu)conv5_1 = nn.Conv2d(in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)conv5_5 = nn.Conv2d(out_channels, out_channels, kernel_size=5, stride=1, padding=2)self.branch3 = nn.Sequential(conv5_1,conv5_5,relu)max_pool_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)conv_max_1 = nn.Conv2d(in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)self.branch4 = nn.Sequential(max_pool_1, conv_max_1,relu)def forward(self, input):output1 = self.branch1(input)output2 = self.branch2(input)output3 = self.branch3(input)output4 = self.branch4(input)return torch.cat([output1, output2, output3, output4], dim=1)model = InceptionModule(in_channels=3,out_channels=32)
inp = torch.rand(1,3,128,128)
print(model(inp).shape)
torch.Size([1, 128, 128, 128])

        当然,您可以在激活函数之前添加规范化层。但由于归一化技术不是很成熟,作者引入了两个辅助分类器。原因是:梯度消失问题)。

2.5 Inception V2, V3 (2015)

后来,在论文“重新思考计算机视觉的初始体系结构”中,作者基于以下原则改进了Inception模型:

  • 将 5x5 和 7x7(在 InceptionV3 中)卷积分别分解为两个和三个 3x3 顺序卷积。这提高了计算速度。这与 VGG 的原理相同。

  • 他们使用了空间上可分的卷积。简单地说,一个 3x3 内核被分解为两个较小的内核:一个 1x3 和一个 3x1 内核,它们按顺序应用。

  • 初始模块变得更宽(更多特征图)。

  • 他们试图在网络的深度和宽度之间以平衡的方式分配计算预算。

  • 他们添加了批量规范化。

inception 模型的更高版本是 InceptionV4 和 Inception-Resnet。

2.6 ResNet:用于图像识别的深度残差学习(2015)

所有预先描述的问题(例如梯度消失)都通过两个技巧得到解决:

  • 批量归一化和

  • 短跳跃连接

        而不是H(x)=F(x) ,我们要求他们模型学习差异(残差)H'(x)=F(x)+x,这意味着H( x) - x=F(x)将是剩余部分 [4]。

跳过连接

来源:斯坦福大学2017年深度学习讲座:CNN架构

        通过这个简单但有效的模块,作者设计了从18层(Resnet-18)到150层(Resnet-150)的更深层次的架构。

        对于最深的模型,他们采用了 1x1 卷积,如右图所示:

跳过连接-1-1-卷积

图片来源:何开明等人,2015年。来源:用于图像识别的深度残差学习

瓶颈层(1×1)层首先减小然后恢复通道尺寸,使3×3层具有较少的输入和输出通道。

        总的来说,这里是整个架构的草图:

Animated GIF

        有关更多详细信息,您可以在ResNets上观看Henry AI Labs的精彩视频:

你可以通过直接从Torchvision导入一堆ResNet来玩它们:

import torchvision
pretrained = True# A lot of choices :P
model = torchvision.models.resnet18(pretrained)
model = torchvision.models.resnet34(pretrained)
model = torchvision.models.resnet50(pretrained)
model = torchvision.models.resnet101(pretrained)
model = torchvision.models.resnet152(pretrained)
model = torchvision.models.wide_resnet50_2(pretrained)
model = torchvision.models.wide_resnet101_2(pretrained)

n.models.wide_resnet101_2(pretrained)

试试吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/59802.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(2023Arxiv)Meta-Transformer: A Unified Framework for Multimodal Learning

论文链接:https://arxiv.org/abs/2307.10802 代码链接:https://github.com/invictus717/MetaTransformer 项目主页:https://kxgong.github.io/meta_transformer/ 【注】:根据实验结果来看,每次输入一种数据源进行处…

Windows11安装Linux子系统,并实现服务自启动,局域网访问,磁盘挂载

Windows11安装Linux子系统,并实现服务自启动,局域网访问,磁盘挂载 一、准备工作二、安装Linux子系统(wsl2)三、为Linux子系统设置桥接网络检查wsl版本在 Hyper-V 管理器中创建虚拟交换机创建 WSL 配置文件启动wsl 四、设置Windows开机自启动L…

以CS32F031为例浅说国产32位MCU的内核处理器

芯片内核又称CPU内核,它是CPU中间的核心芯片,是CPU最重要的组成部分。由单晶硅制成,CPU所有的计算、接受/存储命令、处理数据都由核心执行。各种CPU核心都具有固定的逻辑结构,一级缓存、二级缓存、执行单元、指令级单元和总线接口…

[保研/考研机试] KY180 堆栈的使用 吉林大学复试上机题 C++实现

题目链接: 堆栈的使用_牛客题霸_牛客网 描述 堆栈是一种基本的数据结构。堆栈具有两种基本操作方式,push 和 pop。其中 push一个值会将其压入栈顶,而 pop 则会将栈顶的值弹出。现在我们就来验证一下堆栈的使用。 输入描述: 对于…

目标识别模型两种部署形态图

目标检测预训练模型基于新数据进行微调(训练)之后,得到一个权重文件。 在日常工业、车载等需求环境下,需要在嵌入式移动端的软件系统中调用该模型文件进行推断测试,软件系统追求性能经常使用C/C进行编码实现&#xff…

Wav2Lip实践

1. 安装 1.1 安装 conda以指定python版本运行环境 下载:Index of /https://repo.anaconda.com/archive/index.html 1.2 如按旧项目基于python3.6版本对话,会有很多包找不到的情况,经摸索后以python3.9构建成功, conda instal…

Leetcode-每日一题【剑指 Offer 14- II. 剪绳子 II】

题目 2、3、3的三段,此时得到的最大乘积是18。 答案需要取模 1e97(1000000007),如计算初始结果为:1000000008,请返回 1。 示例 1: 输入: 2输出: 1解释: 2 1 1, 1 1 1 示例 2: 输入: 10输出…

React Native 样式布局基础知识

通过此篇笔记能够学习到如下的几个知识点 在 React Native 中使用样式的一些细节了解 React Native 的 Flex 布局概念了解 React Native 的 flex 布局属性React Native 如何添加多样式属性React Native 中绝对布局和相对布局 React Native 中的 Flex 布局概念 1、主轴和交叉…

4、Rocketmq之存储原理

CommitLog ~ MappedFileQueue ~ MappedFile集合

微服务——操作索引库+文档操作+RestClient操作索引库和文档(java程序)

索引库操作 mapping属性 mapping是对文档的约束,常见约束属性包括: 创建索引库 #创建索引库 PUT /heima {"mappings": {"properties": {"info":{"type": "text","analyzer": "ik_smart"},…

【iPhone】手机还有容量,拍视频却提示 iPhone 储存空间已满

文章目录 前言解决方案 结语 前言 今天在用 iPhone 录像的时候突然提醒我 iPhone储存空间已满 你没有足够的储存空间来录制视频” 可我明明还有 20G 的容量 我非常疑惑,因为我之前还剩1个G都能录像,现在20G反而不行了,于是重启了手机&#…

【ChatGPT 指令大全】怎么使用ChatGPT来辅助学习英语

在当今全球化的社会中,英语已成为一门世界性的语言,掌握良好的英语技能对个人和职业发展至关重要。而借助人工智能的力量,ChatGPT为学习者提供了一个有价值的工具,可以在学习过程中提供即时的帮助和反馈。在本文中,我们…