【小白学机器学习10】假设检验之1:F检验,F检验量的构造,F分布,F分布查表求P值等

目录

1 什么是F检验 F-test

1.1 F-test的定义

1.1.1 维基百科对F检验的定义

1.1.2 百度百科的定义

1.2 F检验的别名

1.3 F检验的判断手段 / 要达成的目标 / 适用范围

1.3.1 判断手段

1.3.2 对H0原假设的理解

1.3.3 判断目标/目的

1.3.4 适用的范围,场合

1.3.5 和其他检验的关系

2 如何弄懂F检验,需要倒推,先理解 F分布和F检验量

2.1 逻辑关系:(倒推需求)F检验→F分布→ F检验量

2.2 为什么?

3 F统计量的构造

3.1 F值/ F指标/ F统计量是如何构造的

3.1.1 构建F值的3个关键参数

3.1.2 F指标的定义

3.1.3 F值 是如何构造出来的?--简单视角

3.1.4 F值 是如何构造出来的?

3.1.5  F值 是如何构造出来的? F=组间误差/组内误差=(SSA/dfa) / (SSE/dfe)

3.2 F统计量和F分布的关系

4 什么是F分布

4.1 F分布的定义

4.1.1 维基百科的定义

4.1.2 来自百度百科的定义

4.3 检验的原理

4.4 F检验的实操(手工方法):根据dfA,dfE 和显著度α 查表得P值, 然后比较2个P值

 4.4.1 显著度 α

4.4.2 自由度1=分子自由度=df1=dfA =自变量个数

4.4.3 自由度2=分母自由度=df2=dfE=n-k-1 = 样本总数- xi对应得参数ai个数- 截距1个参数

4.4.4 总自由度,dfT=dfA+dfE

4.4.5  用前面3个值来查表,获得查表的F值,然后比较2个F值

4.5 F检验:计算机的方法,直接求得具体P值,再比较p和 α

5 F统计量的几个公式分析对比

5.1 F值构造的简单视角,便于理解

5.2 F=回归的均方差MS/ 残差的卷方差MS

5.2  F=组间波动/组内波动

5.3 SSA/dfA的具体设计

5.3.1 这部分内容引用如下

5.3.2  组间波动SSA 必须引入2个新参数:组间的组数k 和组内样本数量mi

5.3.3 SSE组内波动必须引入2个新参数:组间的组数k 和组内样本数量mi

5.3.4 计算必须用MS,而不能直接用SS,或者SS的平方和

5.3.5 SSA和SSE还要考虑df 自由度的影响

6 实操例子1:F值的计算

7 实操例子2 :详细的F值里SSA 和SSE 计算过程展开

7.1 题目来源

7.2 先计算SSE,这个只需要算每组样本内,每个X和对应均值的误差就可以

7.3 计算SSA,注意是组间的均值差异,只算均值和二次均值之间差异

7.4 计算自由度df

7.5 计算F值

7.6 查表对比F值和查表F值

7.7 结论


1 什么是F检验 F-test

F检验临界值表提供了右尾F检验的临界值。当F检验的统计量大于该值时,我们的F检验结果在统计上是有意义的。

1.1 F-test的定义

1.1.1 维基百科对F检验的定义

https://zh.wikipedia.org/wiki/F%E6%A3%80%E9%AA%8Cicon-default.png?t=N7T8https://zh.wikipedia.org/wiki/F%E6%A3%80%E9%AA%8C

  • F检验 (F-test),亦称联合假设检验(joint hypotheses test)、方差比率检验、方差齐性检验。
  • 它是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计总体。
  • F检验这名称是由美国数学家兼统计学家George W. Snedecor命名,为了纪念英国统计学家兼生物学家罗纳德·费希尔(Ronald Aylmer Fisher)。Fisher在1920年代发明了这个检验和F-分布,最初称为方差比率(Variance Ratio)[1]。

1.1.2 百度百科的定义

F检验_百度百科F检验(F-test),最常用的别名叫做联合假设检验(英语:joint hypotheses test),此外也称方差比率检验、方差齐性检验。它是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。F检验这名称是由美国数学家兼统计学家George W. Snedecor命名,为了纪念英国统计学家兼生物学家罗纳德·费雪(Ronald Aylmer Fisher)。Fisher在1920年代发明了这个检验和F分配,最初叫做方差比率(Variance Ratio)。icon-default.png?t=N7T8https://baike.baidu.com/item/F%E6%A3%80%E9%AA%8C/9910842?fr=ge_ala

  • F检验(F-test),最常用的别名叫做联合假设检验(英语:joint hypotheses test),此外也称方差比率检验、方差齐性检验。
  • 它是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

1.2 F检验的别名

  • F检验                         F-test
  • 联合假设检验             joint hypotheses test
  • 方差比率检验             variance ratio test
  • 方差齐性检验             Homogeneity of variance test
  • 就是比较两个目标的方差是否相同/是否存在显著差异?

对应比较:均值齐性检验 T检验和Z检查

  • 我觉得T检验和Z检查,都是比较均值差异的,而不是比较方差齐性的。
  • 也就是都是比较 均值齐性的, Homogeneity of  Average

1.3 F检验的判断手段 / 要达成的目标 / 适用范围

1.3.1 判断手段

  •  它是一种在零假设(null hypothesis, H0)之下,判断统计值服从F-分布的检验
  • 根据求得的F值查表而得到的P值,判断是否,接受原假设H0
  • F检验临界值表提供了右尾F检验的临界值。
  • 当F检验的统计量大于该值时,我们的F检验结果在统计上是有意义的。 

1.3.2 对H0原假设的理解

  • H0 原假设,一般都是假设两者是相同分布 的这种 理想假设。
    •  为什么说是理想假设,因为现实的样本里往往一定存在误差,不可能相同。因此这个H0假设是一个理想假设
    • 虽然永远无法认识总体,但现实中的我们总是一厢情愿的希望,样本从总体里来是无误差的 
    • 理想状态:和之前说的,真实值,观测值,预测值这3种基础数据关系里的真实值一样,本质是永远无法观测到的,只存在于我们的大脑的理想国之中,所以我认为这里是需要懂一点哲学形而上的东西的。
    • 举例子:均匀骰子是1/6, 均匀硬币是0.5,我们认为抽样的人群能代表世界上所有人,这都是理想值(所谓的“真实值”,只存在于彼岸的真实值。即使有时候算出来刚好相等,那也应该是恰好相等而已)

1.3.3 判断目标/目的

  • 以判断该模型中的全部或一部分参数是否适合用来估计总体

1.3.4 适用的范围,场合

适用场合

  • 1 最典型的F检验:检验一系列服从正态分布的总体,是否有相同的标准差
  • 2 应用于方差分析(ANOVA)
  • 3 回归分析
  • 4 检验整条回归模型是否具有解释力,此即Overall F检验 (Overall F test) 。
  • 5 检验回归模型中特定自变量是否具有解释力,即偏回归系数是否为零,此即偏F检验(Partial F test) 。

1.3.5 和其他检验的关系

  • F检验的分子、分母其实各是一个卡方变量除以各自的自由度
  • 分子分母也是标准正态分布的变量吧 ,符合N~(0,1)
  • F检验用以检验单一变量可否排除于模型外时,即进行只缩减单一变量之偏F检验,F=t**2

2 如何弄懂F检验,需要倒推,先理解 F分布和F检验量

2.1 逻辑关系:(倒推需求)F检验→F分布→ F检验量

  • (倒推需求)
  • F检验→
  • F分布→
  • F检验量

2.2 为什么?

呃,不懂原理永远无法理解F检验吧

3 F统计量的构造

要弄清楚F检验,先要弄清楚F分布。而要弄清楚F分布,得先弄清楚F统计量

3.1 F值/ F指标/ F统计量是如何构造的

3.1.1 构建F值的3个关键参数

确定F分布曲线状态,和具体F取值的3个关键指标

  • 1 分子的自由度df1=dfA
  • 2 分母的自由度df2=dfE
  • 3 F=(SSA/dfA) / (SSE/dfE)

3.1.2 F指标的定义

3.1.3 F值 是如何构造出来的?--简单视角

如果做了多次试验,现在得到多组数据,比如是两组

  • 离差平方和∑(x-average(x))**2
  • 样本标准偏差的平方=均方误差MS = S2=∑(x-average(x))**2/(n-1)
  • 两组数据就能得到两个S2值F=S2/S2' (用较小的/较大的?)
  • 然后计算的F值与查表得到的F表值比较,如果
  • F < F表 表明两组数据没有显著差异;
  • F ≥ F表 表明两组数据存在显著差异。

3.1.4 F值 是如何构造出来的?

一文详解F检验 - 知乎F检验是被誉为现代统计学之父的 R.A. Fisher爵士提出、由George W. Snedecor命名的统计检验方法,主要用于方差齐性检验、方差分析等等。本文介绍F检验的如下应用: 方差齐性检验(F-test of equality of variances…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/139151375?utm_id=0&wd=&eqid=9d65f0b200194e3800000002646de47b

70a18a24e2ad4ce6ad4cb44cf3a40caf.png

3.1.5  F值 是如何构造出来的? F=组间误差/组内误差=(SSA/dfa) / (SSE/dfe)

F=组间误差/组内误差=(SSA/dfa) / (SSE/dfe)

3.2 F统计量和F分布的关系

  • F分布构造,2个符合N(0,1) 标准正态分布得变量,和其自由度构造而成
  • F分布,本身是一个非对称,右偏非常明显得一个 类正态分布
  • 所以,F分布,主要关注得是右尾的概率变化

4 什么是F分布

4.1 F分布的定义

4.1.1 维基百科的定义

 F分布是一种连续概率分布,

https://zh.wikipedia.org/wiki/F-%E5%88%86%E5%B8%83https://zh.wikipedia.org/wiki/F-%E5%88%86%E5%B8%83

4.1.2 来自百度百科的定义

  • 可见,F分布用到的两个变量X1,X2 或者称X, Y
    • 服从标准正态分布 N~(0,1)
    • 也符合k2分布

4.3 检验的原理

  • F检验临界值表提供了右尾F检验的临界值。
  • 当F检验的统计量大于该值时,我们的F检验结果在统计上是有意义的。
  • 也就是 显著度 α 和dfA  和 dfE 先确定了F分布曲线的形状
  • 确定后,根据F值,在曲线上找到对应的曲线位置,下面围城的部分里右边部分面积就是p值=概率之和

4.4 F检验的实操(手工方法):根据dfA,dfE 和显著度α 查表得P值, 然后比较2个P值

 4.4.1 显著度 α

  • 实操一般选 0.05 0.01 等几个显著度α

4.4.2 自由度1=分子自由度=df1=dfA =自变量个数

  • 自由度1
  • 分子自由度
  • df1
  • dfA
  • =自变量个数

4.4.3 自由度2=分母自由度=df2=dfE=n-k-1 = 样本总数- xi对应得参数ai个数- 截距1个参数

  • 自由度2
  • 分母自由度
  • df2
  • dfE
  • =n-k-1 = 样本总数- xi对应得参数ai个数- 截距1个参数

4.4.4 总自由度,dfT=dfA+dfE

是回归模型的总自由度,需要加2者之和,暂时这里没啥用

4.4.5  用前面3个值来查表,获得查表的F值,然后比较2个F值

  • 选择显著度 α,选择不同的表  →
  • 选择自由度1=df1  →
  • 自由度2=df2  →
  • 查表得到F值  →
  • 和计算的F值比较,如果大于查表的F,那么p肯定就小于了显著度α!要拒绝原假设。

4.5 F检验:计算机的方法,直接求得具体P值,再比较p和 α

  • 直接根据 选择显著度 α,df1 ,df2  →
  • 先计算出F值   →
  • 然后计算出具体的P值  →
  • 而不是我们查表的几个固定P值得边界,一般是 0.01,0.05 等

5 F统计量的几个公式分析对比

下面对比

5.1 F值构造的简单视角,便于理解

如果做了多次试验,现在得到多组数据,比如是两组

  • 离差平方和∑(x-average(x))**2
  • 样本标准偏差的平方=均方误差MS = S2=∑(x-average(x))**2/(n-1)
  • 两组数据就能得到两个S2值F=S2/S2' (用较小的/较大的?)
  • 然后计算的F值与查表得到的F表值比较,如果
  • F < F表 表明两组数据没有显著差异;
  • F ≥ F表 表明两组数据存在显著差异。

5.2 F=回归的均方差MS/ 残差的卷方差MS

  • 在只存在一次试验,只得到一组样本时的计算F检验
  •  F=回归的均方差MS/ 残差的卷方差MS

5.2  F=组间波动/组内波动

  • 如果是存在多次试验,有多种样本时的计算F检验
  • F=组间波动/组内波动
  • 因为只有多种样本,才存在多组样本之间的多样本二次平均均值,以及每组的均值,以及每组均值和多样本二次平均均值之间的差距,这就是所谓的组见波动
  • 组内波动,当然就是组内数据的差异-离差,就是离差和离差的平方和。离差平方和除以自由度就是方差
  • 神奇的是,当样本组数为1时,也就是不存在多组样本时,两者方法计算出来的F相等
  • 而多次试验得到多组样本,应该只能按方法:F=组间波动/组内波动算

5.3 SSA/dfA的具体设计

5.3.1 这部分内容引用如下

方差分析:F检验 - 知乎方差分析主要是利用F检验来评估三组或更多组数据的均值情况。这篇文章主要聚焦以下问题: ① F统计量 ② F值 ③ F分布 ④ F检验 ⑥ 为何用方差分析来检验均值 在「六西格玛管理统计指南-Minitab使用指南」中,有这…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/662096085

5.3.2  组间波动SSA 必须引入2个新参数:组间的组数k 和组内样本数量mi

  • 也就是引入了2个新参数, 这2个都是样本组间和组内的重要信息,不能丢弃
  • 1 样本组数,i=1~k
  • 2 每个样本的数量大小m,mi

5.3.3 SSE组内波动必须引入2个新参数:组间的组数k 和组内样本数量mi

  • 组内波动,只需要把每组的组内波动,再进行求和,二次求和就行了
  • 但是也包含了,组间的k组数据信息,和组内的m个样本的信息

5.3.4 计算必须用MS,而不能直接用SS,或者SS的平方和

  • 计算F值时,
  • 还是要用均方差MS
  • 而不能直接用 离差平方和!

5.3.5 SSA和SSE还要考虑df 自由度的影响

6 实操例子1:F值的计算

网图,只是拿来计算下具体F值

  • df 自由度,自己看出来算下约束. 因子df=自变量数量,误差自由度=样本数n-约束,
  • 整个模型自由度=两者相加
  • SS,计算出来
  • MS= 对应行的SS/DF 
  • F值=因子的ms/误差ms =回归的MS/ 残差的MS

这个F值的计算过程

  • P值概率的由来,查表得到,有了F值,和 α 显著度可以查到P值
  • 所以说F值本身不是判断标准,只是查表用的,关键还是p值

查表得到p

  • 根据显著度α=0.05,df1=3,df2=16查表 p=3.24
  • 而计算的p=7.95 显然大于3.24 查表值,也就意味着对应的p会小于显著度α=0.05,从而要拒绝原假设。
  • 显著度α/p 其实就是p,都是概率值,显著度α只是一个特定刻度的概率p而已。

7 实操例子2 :详细的F值里SSA 和SSE 计算过程展开

7.1 题目来源

方差分析:F检验 - 知乎方差分析主要是利用F检验来评估三组或更多组数据的均值情况。这篇文章主要聚焦以下问题: ① F统计量 ② F值 ③ F分布 ④ F检验 ⑥ 为何用方差分析来检验均值 在「六西格玛管理统计指南-Minitab使用指南」中,有这…https://zhuanlan.zhihu.com/p/662096085icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/662096085

7.2 先计算SSE,这个只需要算每组样本内,每个X和对应均值的误差就可以

7.3 计算SSA,注意是组间的均值差异,只算均值和二次均值之间差异

  • 均值:每组样本的均值
  • 二次均值/组间均值=  所有样本均值的均值

7.4 计算自由度df

7.5 计算F值

因此    F值=(SSA/df1) / (SSE/ df2)

7.6 查表对比F值和查表F值

查表得到p

  • 根据显著度α=0.05,df1=3,df2=16查表 p=3.24
  • 而计算的p=7.95 显然大于3.24 查表值,也就意味着对应的p会小于显著度α=0.05,从而要拒绝原假设。
  • 显著度α/p 其实就是p,都是概率值,显著度α只是一个特定刻度的概率p而已。

7.7 结论

拒绝原假设H0,两个分布x1 和x2的均值不相等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/599500.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决前端性能瓶颈:高效处理大量数据渲染与复杂交互的策略与优化方法

✨✨祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; 目录 引言 一、分页加载数据 二、虚拟滚动 三、懒加载 四、数据缓存 五、减少重绘和回流 …

Android协程GlobalScope、lifecycleScope、CoroutineScope的launch,Kotlin

Android协程GlobalScope、lifecycleScope、CoroutineScope的launch&#xff0c;Kotlin import android.os.Bundle import android.util.Log import androidx.appcompat.app.AppCompatActivity import androidx.lifecycle.lifecycleScope import kotlinx.coroutines.CoroutineSc…

SpringMVC数据响应和请求

文章目录 1.SpringMVC简介2. SpringMVC快速入门3. SpringMVC执行的流程4.SpringMVC注解解释5. 视图解析器6.SpringMVC的数据响应6.1返回ModelView对象6.2直接返回字符串6.3返回json字符串 7.SpringMVC获得请求数据7.1 获得基本类型参数7.2获得POJO类型参数7.3获取数组类型参数7…

uniapp使用npm命令引入font-awesome图标库最新版本

uniapp使用npm命令引入font-awesome图标库最新版本 图标库网址&#xff1a;https://fontawesome.com/search?qtools&or 命令行&#xff1a; 引入 npm i fortawesome/fontawesome-free 查看版本 npm list fortawesome在main.js文件中&#xff1a; import fortawesome/fo…

163 Linux C++ 通讯架构实战17,本地套接字整理对比,IPC:pipe,fifo,mmap,信号,本地套

IPC&#xff1a; Linux环境下&#xff0c;进程地址空间相互独立&#xff0c;每个进程各自有不同的用户地址空间。任何一个进程的全局变量在另一个进程中都看不到&#xff0c;所以进程和进程之间不能相互访问&#xff0c;要交换数据必须通过内核&#xff0c;在内核中开辟一块缓冲…

git bash上传文件至github仓库

Linux运维工具-ywtool 目录 一.访问github二.新建仓库1.点击自己头像2.选择"your repositories"3.点击"New"4.创建新仓库 三.通过git bash软件上传文件1.提示2.打开git bash软件3.切换到本地仓库目录4.配置github的用户名和邮箱信息5.生成SSH Key6.github添…

【单源最短路 图论】882. 细分图中的可到达节点

作者推荐 视频算法专题 本文涉及知识点 单源最短路 图论 LeetCode 882. 细分图中的可到达节点 给你一个无向图&#xff08;原始图&#xff09;&#xff0c;图中有 n 个节点&#xff0c;编号从 0 到 n - 1 。你决定将图中的每条边 细分 为一条节点链&#xff0c;每条边之间…

MySQL-5.函数

5.1 统计函数&#xff08;聚合函数&#xff09; # 统计数学成绩大于 90 的学生有多少个&#xff1f; SELECT COUNT(*) FROM student WHERE math > 90;# 求一个班级总分平均分 SELECT AVG(math english chinese) FROM student;# 统计一个班级数学总成绩 SELECT SUM(math) F…

2.接口自动化测试学习-执行excel测试用例

1.接口自动化测试规划 编程语言 编程工具 自动化测试框架&#xff1a;pytest 报告可视化&#xff1a;allure 持续方案&#xff1a;CI持续集成-jenkins 仓库服务器&#xff08;自动化执行&#xff09;&#xff1a;github/gitlab/gitee 测试管理工具&#xff1a;jira 2.项目代码…

SRIO学习(1)SRIO介绍以及IP核详解

文章目录 一、SRIO介绍1.1、概要1.2、RapidIO与传统嵌入互连方式的比较1.3、串行RapidIO协议&#xff08;SRIO&#xff09; 二、RapidIO协议结构及包格式2.1、逻辑层2.2 传输层2.3 物理层 三、IP核详解3.1、逻辑层3.1.1 I/O端口3.1.2 消息&#xff08;Message&#xff09;端口3…

前端开发语言有那些?

前端开发语言有那些&#xff1f; 1、html 超文本标记语言&#xff1a;构建前端网页的基本结构&#xff0c;就象人的骨架一样。 2、css 层叠样式表&#xff1a;控制网页的样式和布局&#xff0c;就象人需要穿各种服式展现不同风采。 3、javascript 简称 JS 动态脚本语言&#x…

162 Linux C++ 通讯架构实战16,UDP/TCP协议的优缺点,使用环境对比。UDP 服务器开发

UDP/TCP协议的优缺点 TCP :面向连接的&#xff0c;可靠数据包传输。对于不稳定的网络层&#xff0c;采取完全弥补的通信方式。丢包重传 优点&#xff1a;稳定&#xff0c;数据流量稳定&#xff0c;速度稳定&#xff0c;顺序稳定 缺点&#xff1a;传输速度慢&…