pytorch Stream 多流处理

CUD Stream

  • https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions
    中指出在kenel的调用函数中最后一个可选参数表示该核函数处在哪个流之中。
    在这里插入图片描述
- 参数Dg用于定义整个grid的维度和尺寸,即一个grid有多少个block。为dim3类型。Dim3 Dg(Dg.x, Dg.y, 1)表示grid中每行有Dg.x个block,每列有Dg.y个block,第三维恒为1(目前一个核函数只有一个grid)。整个grid中共有Dg.x*Dg.y个block,其中Dg.x和Dg.y最大值为65535- 参数Db用于定义一个block的维度和尺寸,即一个block有多少个thread。为dim3类型。Dim3 Db(Db.x, Db.y, Db.z)表示整个block中每行有Db.x个thread,每列有Db.y个thread,高度为Db.z。Db.x和Db.y最大值为512,Db.z最大值为62。 一个block中共有Db.x*Db.y*Db.z个thread。计算能力为1.0,1.1的硬件该乘积的最大值为768,计算能力为1.2,1.3的硬件支持的最大值为1024- Ns 的类型为 size_t,用于设置每个block除了静态分配的shared Memory以外,最多能动态分配的shared memory大小,单位为byte。不需要动态分配时该值为0或省略不写。如[__shared__](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared)中所述,此动态分配的内存由声明为外部数组的任何变量使用; 
- 参数S是一个cudaStream_t类型的可选参数,初始值为零,表示该核函数处在哪个流之中。
  • CUDA编程中,默认使用默认流非并行执行kernel,每个kernel由许多thread并行的执行在GPU上。Stream的概念是相对Grid level来说的,使得kernel在一个device上同时执行。
    https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

  • 官方提供的用例

// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)cudaStreamCreate(&stream[i]);
float* hostPtr;
cudaMallocHost(&hostPtr, 2 * size);
// 以下代码示例将其中每个流定义为从主机到设备的一个内存副本、一个内核启动和一个从设备到主机的内存副本的序列:
for (int i = 0; i < 2; ++i) {cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,size, cudaMemcpyHostToDevice, stream[i]);MyKernel <<<100, 512, 0, stream[i]>>>(outputDevPtr + i * size, inputDevPtr + i * size, size);cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,size, cudaMemcpyDeviceToHost, stream[i]);
}
// 通过调用 释放流
for (int i = 0; i < 2; ++i)cudaStreamDestroy(stream[i]);

PyTorch Stream

  • 在PyTorch中,默认情况下,GPU上的操作是在默认流(default stream)中执行的。默认流是一个序列化的流,其中的操作按照它们出现的顺序逐个执行。这意味着在没有显式指定其他流的情况下,所有的操作都会在默认流中执行。

  • 然而,PyTorch还提供了功能可以将操作提交到其他流中执行,以充分利用GPU的并行性。这对于并行处理多个任务或同时执行多个独立操作非常有用。

  • 您可以使用torch.cuda.Stream()来创建其他流,并使用torch.cuda.current_stream()来获取当前流。然后,您可以将操作提交到指定的流中执行,例如:

import torchdevice = torch.device('cuda')# 创建一个默认流
default_stream = torch.cuda.current_stream()# 创建一个自定义流
custom_stream = torch.cuda.Stream()# 在默认流中执行操作
with torch.cuda.stream(default_stream):# 执行操作...# 在自定义流中执行操作
with torch.cuda.stream(custom_stream):# 执行操作...

例子

import torch
s1 = torch.cuda.Stream()
s2 = torch.cuda.Stream()
# Initialise cuda tensors here. E.g.:
A = torch.rand(1000, 1000, device = 'cuda')
B = torch.rand(1000, 1000, device = 'cuda')
# Wait for the above tensors to initialise.
torch.cuda.synchronize()
with torch.cuda.stream(s1):C = torch.mm(A, A)
with torch.cuda.stream(s2):D = torch.mm(B, B)
# Wait for C and D to be computed.
torch.cuda.synchronize()
# Do stuff with C and D.
print(C)
print(D)
// https://stackoverflow.com/questions/70128833/why-and-when-to-use-torch-cuda-stream

这样可以利用多个流来并行执行计算,并在计算和数据传输之间实现重叠。这对于提高GPU利用率和加速训练或推理过程非常有帮助。

错误示例

  • 没有使用 synchronize() 或者 wait_stream()进行同步,可能导致再未完成归一化前执行求和
// https://pytorch.org/docs/stable/notes/cuda.html
cuda = torch.device('cuda')
s = torch.cuda.Stream()  # Create a new stream.
A = torch.empty((100, 100), device=cuda).normal_(0.0, 1.0)
with torch.cuda.stream(s):# sum() may start execution before normal_() finishes!B = torch.sum(A)

CG

  • https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams

  • https://pytorch.org/docs/stable/notes/cuda.html#multistream-capture

  • https://pytorch.org/cppdocs/notes/tensor_cuda_stream.html

  • https://pypi.org/project/pytorch-stream/

  • CUDA 的 Stream and Event https://zhuanlan.zhihu.com/p/369367933

  • GITHUBGIST Gist就是小型代码片段的分享https://www.cnblogs.com/leader755/p/14284716.html

  • [JIT] 在 TorchScript 中支持 CUDA 流 https://github.com/pytorch/pytorch/issues/41355

  • https://pytorch.org/docs/stable/notes/cuda.html#cuda-semantics

  • https://github.com/pytorch/pytorch/issues/41355

多设备

// https://pytorch.org/docs/stable/notes/cuda.html#cuda-semantics
cuda = torch.device('cuda')     # Default CUDA device
cuda0 = torch.device('cuda:0')
cuda2 = torch.device('cuda:2')  # GPU 2 (these are 0-indexed)x = torch.tensor([1., 2.], device=cuda0)
# x.device is device(type='cuda', index=0)
y = torch.tensor([1., 2.]).cuda()
# y.device is device(type='cuda', index=0)with torch.cuda.device(1):# allocates a tensor on GPU 1a = torch.tensor([1., 2.], device=cuda)# transfers a tensor from CPU to GPU 1b = torch.tensor([1., 2.]).cuda()# a.device and b.device are device(type='cuda', index=1)# You can also use ``Tensor.to`` to transfer a tensor:b2 = torch.tensor([1., 2.]).to(device=cuda)# b.device and b2.device are device(type='cuda', index=1)c = a + b# c.device is device(type='cuda', index=1)z = x + y# z.device is device(type='cuda', index=0)# even within a context, you can specify the device# (or give a GPU index to the .cuda call)d = torch.randn(2, device=cuda2)e = torch.randn(2).to(cuda2)f = torch.randn(2).cuda(cuda2)# d.device, e.device, and f.device are all device(type='cuda', index=2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/59994.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8S系列文章之 自动化运维利器 Fabric

Fabric 主要用在应用部署与系统管理等任务的自动化&#xff0c;简单轻量级&#xff0c;提供有丰富的 SSH 扩展接口。在 Fabric 1.x 版本中&#xff0c;它混杂了本地及远程两类功能&#xff1b;但自 Fabric 2.x 版本起&#xff0c;它分离出了独立的 Invoke 库&#xff0c;来处理…

Selenium 自动化测试实战笔记1

1. 安装 selenium pip install selenium 3.11.0 # 安装指定版本 pip install selenium -U # 安装最新版本 pip show selenium # 查看当前版本 pip uninstall selenium # 卸载 报错解决1&#xff1a; 带上代理 pip install selenium -i http://mirrors.aliyun.com/…

这些工具让音频文件格式转换更简单

小华是一位音乐爱好者&#xff0c;他平时喜欢下载并播放一些流行音乐。在这个过程中&#xff0c;他发现从不同平台上下载下来的音乐格式并不一样&#xff0c;而不同的播放平台也支持不同的音频格式。这令他感到烦恼&#xff0c;并希望通过一些音频格式转换器来帮助他解决音频格…

基于springboot+vue的幼儿园管理系统的设计与实现_5umt6

随着世界经济信息化、全球网络化的到来推动信息线上管理的飞速发展&#xff0c;为幼儿园行业的改革起到关键作用。若想达到安全&#xff0c;快捷的目的&#xff0c;就需要拥有信息化的组织和管理模式&#xff0c;建立一套合理、畅通、高效的幼儿园管理系统。当前的幼儿园管理系…

实例033 制作闪烁的窗体

实例说明 Windows系统中&#xff0c;当程序在后台运行时&#xff0c;如果某个窗口的提示信息需要用户浏览&#xff0c;该窗口就会不停的闪烁&#xff0c;这样就会吸引用户的注意。同样&#xff0c;如果在自己的程序中使某个窗口不停的闪烁就会吸引用户的注意。本例设计了一个闪…

Xception 算法详解

📮 本次重点(模型轻量化): ● Inception设计理念 ● 点卷积 ● 深度可分离卷积 ● Bottleneck结构 注:Xception算法整体结构是其次,主要是了解以上四个结构。 今天详解Xception算法,由于Xception模型在极大的减少了网络参数量和计算复杂度的同时,可以保持卓越的性能表…

MyBatis-XML映射文件

XML映射文件 规范 XML映射文件的名称与Mapper接口名称一致&#xff08;EmpMapper对应EmpMpper.xml&#xff09;&#xff0c;并且将XML映射文件和Mapper接口放置在相同包下&#xff08;同包同名&#xff09; ​​​ 在maven项目结构中所有的配置文件都在resources目录之下&…

JavaWeb(11)——前端综合案例5(小黑记事本)

一、实例需求 ⌛ 功能需求&#xff1a; ① 列表渲染 ② 删除功能 ③ 添加功能 ④ 底部统计 和 清空任务 二、代码实现 ☕ <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8" /> <meta http-equiv"X-UA-Compa…

测评HTTP代理的透明匿名?

在我们日常的网络冒险中&#xff0c;你是否曾听说过HTTP代理的透明匿名特性&#xff1f;这些神秘的工具就像是网络世界中的隐身斗士&#xff0c;让我们能够在互联网的迷雾中保护自己的身份和隐私。那么&#xff0c;让我们一起揭开HTTP代理的面纱&#xff0c;探索其中的奥秘吧&a…

(Python)Requests+Pytest+Allure接口自动化测试框架从0到1搭建

前言&#xff1a;本文主要介绍在企业使用Python搭建接口自动化测试框架&#xff0c;数据驱动读取excel表里的数据&#xff0c;和数据库方面的交互&#xff0c;包括关系型数据库Mysql和非关系型数据库MongDB&#xff0c;连接数据库&#xff0c;读取数据库中数据&#xff0c;最后…

【SpringCloud】Gateway服务网关

Spring Cloud Gateway 是 Spring Cloud 的一个全新项目&#xff0c;该项目是基于 Spring 5.0&#xff0c;Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关&#xff0c;它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。 1.为什么需要网关…

windows 安装免费3用户ccproxy ubuntu 代理上网

Windows 上进行安装 ubuntu 上进行设置 方法一 (临时的手段) 如果仅仅是暂时需要通过http代理使用apt-get&#xff0c;您可以使用这种方式。 在使用apt-get之前&#xff0c;在终端中输入以下命令&#xff08;根据您的实际情况替换yourproxyaddress和proxyport&#xff09;。 终…