图像识别网络与训练策略——基于经典网络架构训练图像分类模型

基于经典网络架构训练图像分类模型

总体框架

数据预处理部分:- 数据增强:torchvision中transforms模块自带功能,比较实用
- 数据预处理:torchvision中transforms也帮我们实现好了,直接调用即可
- DataLoader模块直接读取batch数据
网络模块设置:- 加载预训练模型,torchvision中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习
- 需要注意的是别人训练好的任务跟咱们的可不是完全一样,需要把最后的head层改一改,一般也就是最后的全连接层,改成咱们自己的任务
- 训练时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的
网络模型保存与测试
- 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存
- 读取模型进行实际测试

0.导入包

import os
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
#pip install torchvision
from torchvision import transforms, models, datasets
#https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
warnings.filterwarnings("ignore")
import random
import sys
import copy
import json
from PIL import Image

1. 数据读取与预处理操作

data_dir = './flower_data/'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

2.制作好数据源

- data_transforms中指定了所有图像预处理操作
- ImageFolder假设所有的文件按文件夹保存好,每个文件夹下面存贮同一类别的图片,文件夹的名字为分类的名字
data_transforms = {'train': transforms.Compose([transforms.Resize([96, 96]),transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选transforms.CenterCrop(64),#从中心开始裁剪transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=Btransforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差]),'valid': transforms.Compose([transforms.Resize([64, 64]),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}

3.准备数据集和加载器

batch_size = 128image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes

4.读取标签对应的实际名字

with open('cat_to_name.json', 'r') as f:cat_to_name = json.load(f)

5. 加载models中提供的模型

并且直接用训练的好权重当做初始化参数

model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True #都用人家特征,咱先不更新
# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()if not train_on_gpu:print('CUDA is not available.  Training on CPU ...')
else:print('CUDA is available!  Training on GPU ...')device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
模型参数要不要更新
有时候用人家模型,就一直用了,更不更新咱们可以自己定
def set_parameter_requires_grad(model, feature_extracting):if feature_extracting:for param in model.parameters():param.requires_grad = False
model_ft = models.resnet18()#18层的能快点,条件好点的也可以选152

6.把模型输出层改成自己的

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):model_ft = models.resnet18(pretrained=use_pretrained)set_parameter_requires_grad(model_ft, feature_extract)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 102)#类别数自己根据自己任务来input_size = 64#输入大小根据自己配置来return model_ft, input_size

7.设置哪些层需要训练

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#GPU还是CPU计算
model_ft = model_ft.to(device)# 模型保存,名字自己起
filename='checkpoint.pth'# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:params_to_update = []for name,param in model_ft.named_parameters():if param.requires_grad == True:params_to_update.append(param)print("\t",name)
else:for name,param in model_ft.named_parameters():if param.requires_grad == True:print("\t",name)

 8.优化器设置

optimizer_ft = optim.Adam(params_to_update, lr=1e-2)#要训练啥参数,你来定
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=10, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
criterion = nn.CrossEntropyLoss()

9.训练模块

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'):#咱们要算时间的since = time.time()#也要记录最好的那一次best_acc = 0#模型也得放到你的CPU或者GPUmodel.to(device)#训练过程中打印一堆损失和指标val_acc_history = []train_acc_history = []train_losses = []valid_losses = []#学习率LRs = [optimizer.param_groups[0]['lr']]#最好的那次模型,后续会变的,先初始化best_model_wts = copy.deepcopy(model.state_dict())#一个个epoch来遍历for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 训练和验证for phase in ['train', 'valid']:if phase == 'train':model.train()  # 训练else:model.eval()   # 验证running_loss = 0.0running_corrects = 0# 把数据都取个遍for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)#放到你的CPU或GPUlabels = labels.to(device)# 清零optimizer.zero_grad()# 只有训练的时候计算和更新梯度outputs = model(inputs)loss = criterion(outputs, labels)_, preds = torch.max(outputs, 1)# 训练阶段更新权重if phase == 'train':loss.backward()optimizer.step()# 计算损失running_loss += loss.item() * inputs.size(0)#0表示batch那个维度running_corrects += torch.sum(preds == labels.data)#预测结果最大的和真实值是否一致epoch_loss = running_loss / len(dataloaders[phase].dataset)#算平均epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)time_elapsed = time.time() - since#一个epoch我浪费了多少时间print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 得到最好那次的模型if phase == 'valid' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())state = {'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重'best_acc': best_acc,'optimizer' : optimizer.state_dict(),}torch.save(state, filename)if phase == 'valid':val_acc_history.append(epoch_acc)valid_losses.append(epoch_loss)#scheduler.step(epoch_loss)#学习率衰减if phase == 'train':train_acc_history.append(epoch_acc)train_losses.append(epoch_loss)print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))LRs.append(optimizer.param_groups[0]['lr'])print()scheduler.step()#学习率衰减time_elapsed = time.time() - sinceprint('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果,等着一会测试model.load_state_dict(best_model_wts)return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

开始训练!

- 我们现在只训练了输出层

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20)
### 再继续训练所有层
for param in model_ft.parameters():param.requires_grad = True# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(model_ft.parameters(), lr=1e-3)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)# 损失函数
criterion = nn.CrossEntropyLoss()
# 加载之前训练好的权重参数checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10,)

 

### 加载训练好的模型
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)# GPU模式
model_ft = model_ft.to(device)# 保存文件的名字
filename='best.pt'# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

测试数据预处理

 ​​​​
- 测试数据处理方法需要跟训练时一直才可以
- crop操作的目的是保证输入的大小是一致的
- 标准化操作也是必须的,用跟训练数据相同的mean和std,但是需要注意一点训练数据是在0-1上进行标准化,所以测试数据也需要先归一化
- 最后一点,PyTorch中颜色通道是第一个维度,跟很多工具包都不一样,需要转换

# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()model_ft.eval()if train_on_gpu:output = model_ft(images.cuda())
else:output = model_ft(images)
output表示对一个batch中每一个数据得到其属于各个类别的可能性
### 得到概率最大的那个
_, preds_tensor = torch.max(output, 1)preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

 

展示预测结果

def im_convert(tensor):""" 展示数据"""image = tensor.to("cpu").clone().detach()image = image.numpy().squeeze()image = image.transpose(1,2,0)image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))image = image.clip(0, 1)return image
fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2for idx in range (columns*rows):ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])plt.imshow(im_convert(images[idx]))ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/600935.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小小算式(1 + 2) * (3 + 4)背后的大道理

目录 前缀表示法(波兰表达式) 中缀表达法 后缀表达法(逆波兰表达式) 三种表达法的相互转换 练习:逆波兰表达式求值 前缀表示法(波兰表达式) 波兰表示法(英语:Polis…

【二分查找】Leetcode 寻找旋转排序数组中的最小值

题目解析 153. 寻找旋转排序数组中的最小值 我们可以发现旋转后的数组是有这样一个顺序特征: 1.要么是旋转长度次,刚好还是原来的数组 2.要么一定存在一段一段的升序区间,再其中一段的升序区间中就存在最小值 算法讲解 但是我们这一次使用…

代码随想录阅读笔记-二叉树【修剪二叉搜索树】

题目 给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。 思路 相信看到这道题目大家都感觉是…

健身房如何通过软文获客?媒介盒子告诉你

如今全民健康意识上升,大家越来越重视运动带给人的获得感以及成就感,对于健身房来说,适当进行推广,不仅可以提高品牌知名度,还能吸引更多的潜在客户。今天媒介盒子就从专业角度和大家聊聊:健身房如何通过软…

分表?分库?分库分表?实践详谈 ShardingSphere-JDBC

如果有不是很了解ShardingSphere的可以先看一下这个文章: 《ShardingSphere JDBC?Sharding JDBC?》基本小白脱坑问题 阿丹: 在很多开发场景下面,很多的技术难题都是出自于,大数据量级或者并发的场景下面的。这里就出…

什么是 SD NAND?

什么是 CS 创世 SD NAND 呢?很多的朋友一直想知道这个问题。 什么是 CS 创世 SD NAND 呢?很多的朋友一直想知道这个问题。今天我们雷龙也精心准备了 SD NAND 的一个介绍。其实很多工程师朋友对 CS 创世 SD NAND 有很多称呼。比如:贴片式 T 卡…

Java多线程+分治求和,太牛了

shigen坚持更新文章的博客写手,擅长Java、python、vue、shell等编程语言和各种应用程序、脚本的开发。记录成长,分享认知,留住感动。 个人IP:shigen 最近的一个面试,shigen简直被吊打,简历上写了熟悉高并发…

机械类外文翻译,中译英如何翻译比较好?

在全球化日益加剧的今天,我们的机械制造业纷纷跨越国界,与海外企业携手合作。机构类外文翻译的需求也日益凸显。那么,针对机械类外文翻译,中译英如何翻译比较好? 首先,我们需要明确一点,高质量的…

弹幕功能1

今天看pure-admin的时候发现有个弹幕功能 GitHub - hellodigua/vue-danmaku: 基于 Vue 的弹幕交互组件 | A danmaku component for Vue

内容多样化的秘密:Kompas.ai如何拓展你的内容形式

在这个信息爆炸的时代,内容多样化已成为品牌吸引和维系广泛受众的关键策略。多样化的内容形式不仅能够迎合不同用户的偏好,还能够提高内容的覆盖面和参与度,从而增强品牌的市场竞争力。本文将深入探讨内容形式多样化的重要性,展示…

ctfshow web入门 php特性 web108--web115

web108 ereg函数相当于而preg_match()函数 ereg函数的漏洞:00截断。%00截断及遇到%00则默认为字符串的结束 strrev函数就是把字符串倒过来 就是说intval处理倒过来的传参c0x36d(877)?ca%00778 web109 异常处理类 通过异常处理类Excepti…

weight-tying探索

在一些领域,将嵌入层和输出层的权重绑定,以达到减少参数量并使得相同token保持统一的embedding空间的作用。 下面的nn.Linear(3, 10)的权重矩阵的尺寸是10*3,即y W x b,因此跟nn.Embedding(10, 3)的权重矩阵大小相等。 impor…