网格矢量如何计算莫兰指数

网格矢量如何计算莫兰指数

引言

遇到一个问题,计算矢量网格的莫兰指数。

概念解释

莫兰指数

莫兰指数(Moran’s Index)是一种空间自相关指标,用于衡量空间数据的相似性和聚集程度。它可以用来描述一个区域与其邻近区域之间的属性值的相关性。莫兰指数的取值范围通常在-1到1之间。

  • 当莫兰指数接近1时,表示空间数据呈现出正相关,即相似的值倾向于聚集在一起。
  • 当莫兰指数接近-1时,表示空间数据呈现出负相关,即不同的值倾向于聚集在一起。
  • 当莫兰指数接近0时,表示空间数据呈现出随机分布,没有明显的空间自相关性。

knearst=4?

knearst=4矩阵是一种空间权重矩阵,用于定义空间数据中每个观测点的邻域。在这种矩阵中,每个观测点的邻域由其最近的4个点组成。

示意图,这个用距离小时

解决思路

计算矢量数据中每个要素(网格)的局部莫兰指数,并将计算结果添加到矢量数据的属性表中。我做了一个示意矢量,如图所示:

因为需要涉及到矢量数据的操作,这里我们使用gdal

还涉及到莫兰指数,我们使用pysal,这个包用于空间权重矩阵的构建、空间自相关指标的计算、空间回归模型的估计等。

初始化和读取矢量数据

import numpy as np
import pysal
from osgeo import ogrdriver = ogr.GetDriverByName('ESRI Shapefile')
SHP_PATH = r"矢量数据.shp"
dataset = driver.Open(SHP_PATH, 1) 
layer = dataset.GetLayer()
  1. 使用 ogr 库打开矢量数据文件(ESRI Shapefile),以读写模式打开。
  2. 获取矢量数据的图层。

提取属性值和坐标

values = []
coords = []
for feature in layer:geom = feature.GetGeometryRef()centroid = geom.Centroid()coords.append([centroid.GetX(), centroid.GetY()])values.append(feature.GetField('singlearea'))values = np.array(values)
coords = np.array(coords)
  1. 遍历图层中的每个要素(feature)。
  2. 获取要素的几何体(geometry),并计算其质心坐标。
  3. 将质心坐标添加到 coords 列表中。
  4. 将指定字段(‘singlearea’)的属性值添加到 values 列表中。
  5. 将属性值和坐标转换为 NumPy 数组。

创建权重矩阵

knn = pysal.lib.weights.KNN(coords, k=4)
knn.transform = 'r'
  1. 使用 pysal 库的 KNN 函数创建 k 最近邻权重矩阵,设置 k=4
  2. 对权重矩阵进行行标准化。

计算局部莫兰指数

local_moran = pysal.explore.esda.Moran_Local(values, knn)
print("局部莫兰指数:", local_moran.Is)# 标准化局部莫兰指数
min_value = np.min(local_moran.Is)
max_value = np.max(local_moran.Is)
normalized_local_moran = (local_moran.Is - min_value) / (max_value - min_value) * 2 - 1
print("标准化后的局部莫兰指数:", normalized_local_moran)
  1. 使用 pysal 库的 Moran_Local 函数计算每个网格的局部莫兰指数。
  2. 打印计算得到的局部莫兰指数。

将局部莫兰指数添加到矢量数据属性表

lisa_field = ogr.FieldDefn('LISA_I', ogr.OFTReal)
layer.CreateField(lisa_field)dataset = None
dataset = driver.Open(SHP_PATH, 1)
layer = dataset.GetLayer()for i in range(layer.GetFeatureCount()):feature = layer.GetFeature(i)feature.SetField('LISA_I', float(local_moran.Is[i]))layer.SetFeature(feature)
  1. 创建一个新的字段(‘LISA_I’)来存储局部莫兰指数。
  2. 重新打开矢量数据集并获取图层。
  3. 遍历图层中的每个要素。
  4. 使用 layer.GetFeature(i) 获取要素,并将对应的局部莫兰指数赋值给新字段。
  5. 更新要素的属性表。

关闭数据集并销毁数据源

dataset.Destroy()
dataset = None
print("局部莫兰指数已成功添加到矢量数据属性表中。")
  1. 关闭矢量数据集。
  2. 销毁数据源以释放资源。
  3. 打印提示信息,表示局部莫兰指数已成功添加到矢量数据的属性表中。

完整代码

import numpy as np
import pysal
from osgeo import ogr# 打开矢量数据文件(以读写模式打开)
driver = ogr.GetDriverByName('ESRI Shapefile')
SHP_PATH = r"矢量数据 - 副本.shp"
dataset = driver.Open(SHP_PATH, 1)  
layer = dataset.GetLayer()# 提取属性值和坐标
values = []
coords = []
for feature in layer:geom = feature.GetGeometryRef()centroid = geom.Centroid()coords.append([centroid.GetX(), centroid.GetY()])values.append(feature.GetField('cenlan'))# 将属性值和坐标转换为NumPy数组
values = np.array(values)
coords = np.array(coords)# 创建k最近邻权重矩阵(knearst=4)
knn = pysal.lib.weights.KNN(coords, k=4)# 行标准化权重矩阵
knn.transform = 'r'# 计算每个网格的局部莫兰指数
local_moran = pysal.explore.esda.Moran_Local(values, knn)
print("局部莫兰指数:", local_moran.Is)# 标准化局部莫兰指数
min_value = np.min(local_moran.Is)
max_value = np.max(local_moran.Is)
normalized_local_moran = (local_moran.Is - min_value) / (max_value - min_value) * 2 - 1
print("标准化后的局部莫兰指数:", normalized_local_moran)# 将标准化后的局部莫兰指数添加到矢量数据属性表,使用有效的字段名称
lisa_field = ogr.FieldDefn('LISA_I', ogr.OFTReal)
layer.CreateField(lisa_field)# 重新打开数据集并获取图层
dataset = None
dataset = driver.Open(SHP_PATH, 1)
layer = dataset.GetLayer()# 使用 layer.GetFeature(i) 获取要素并更新,使用更新后的字段名称
for i in range(layer.GetFeatureCount()):feature = layer.GetFeature(i)feature.SetField('LISA_I', float(normalized_local_moran[i]))layer.SetFeature(feature)# 关闭数据集并销毁数据源
dataset.Destroy()
dataset = Noneprint("标准化后的局部莫兰指数已成功添加到矢量数据属性表中。")

效果展示

运行完代码,效果为:

总结

使用gdal负责空间数据处理,使用pysal完成莫兰指数的计算,然后把计算结果写入到属性表里,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/604078.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker入门指南:从安装到基本操作和镜像构建的全面教程

文章目录 一、Docker简介二、Docker的安装三、Docker的基本概念四、Docker的基本操作五、Dockerfile和镜像构建六、总结 一、Docker简介 Docker是一个开源的应用容器引擎,它允许开发者将应用程序及其依赖项打包到一个可移植的容器中,然后在任何支持Dock…

微电网优化:基于巨型犰狳优化算法(Giant Armadillo Optimization,GAO)的微电网优化(提供MATLAB代码)

一、微电网优化模型 微电网是一个相对独立的本地化电力单元,用户现场的分布式发电可以支持用电需求。为此,您的微电网将接入、监控、预测和控制您本地的分布式能源系统,同时强化供电系统的弹性,保障您的用电更经济。您可以在连接…

Pots(DFS BFS)

//新生训练 #include <iostream> #include <algorithm> #include <cstring> #include <queue> using namespace std; typedef pair<int, int> PII; const int N 205; int n, m; int l; int A, B, C; int dis[N][N];struct node {int px, py, op…

【C++ STL有序关联容器】map 映射

文章目录 【 1. 基本原理 】【 2. map 的创建 】2.1 调用默认构造函数&#xff0c;创建一个空的 map2.2 map 被构造的同时初始化2.3 通过一个 map 初始化另一个 map2.4 取已建 map 中指定区域内的键值对&#xff0c;初始化新的 map2.5 指定排序规则 【 2. map 元素的操作 】实例…

一个公众号是怎么一天发布100篇文章的

公众号RPA机器人&#xff0c;不仅可以帮我们仿写10w的爆文&#xff0c;还可以根据话题自动进行创作。上面2个功能已经非常牛啤了&#xff0c;但我们这个机器人还有更厉害的一个功能&#xff0c;那就是自动插图&#xff0c;让你的每一篇文章都智能插入相关的图片&#xff0c;文章…

《QT实用小工具·二十二》多种样式导航按钮控件

1、概述 源码放在文章末尾 该项目实现了多种样式的导航按钮控件 可设置文字的左侧、右侧、顶部、底部间隔。 可设置文字对齐方式。 可设置显示倒三角、倒三角边长、倒三角位置、倒三角颜色。 可设置显示图标、图标间隔、图标尺寸、正常状态图标、悬停状态图标、选中状态图标…

A Learning-Based Approach for IP Geolocation

下载地址:Towards IP geolocation using delay and topology measurements | Proceedings of the 6th ACM SIGCOMM conference on Internet measurement 被引次数:185 Abstract 定位IP主机地理位置的能力对于在线广告和网络攻击诊断等应用程序是非常吸引力的。虽然先前的方…

基础语法复习

常用的定义&#xff1a; 读取数据加速&#xff1a; input sys.stdin.readline 设置递归深度&#xff1a; sys.setrecursionlimit(100000) 记忆化搜索&#xff1a; from functools import lru_cache lru_cache(maxsizeNone) 计数器&#xff1a; Counter 类是一个非常有…

C++类与对象上(个人笔记)

类与对象 1.面向过程和面向对象初步认识2.类的定义3.类的访问限定符及封装3.1 访问限定符 4.封装5.类的实例化6.类对象6.1类对象的内存计算6.2内存对齐规则&#xff08;回顾&#xff09; 7.this指针7.1 this指针的特性 1.面向过程和面向对象初步认识 C语言是面向过程的&#x…

不牺牲算法,不挑剔芯片,这个来自中科院的团队正在加速国产AI芯片破局

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 新建了免费的人工智能中文站https://ai.weoknow.com 新建了收费的人工智能中文站https://ai.hzytsoft.cn/ 更多资源欢迎关注 不降低大模型算法精度&#xff0c;还能把芯片的算力利用效率提升 2~10 倍&#xff0c;这就是…

SpringBoot整合MyBatis四种常用的分页方式

目录 方式1 一、准备工作 1. 创建表结构 2. 导入表数据 3. 导入pom.xml依赖 4. 配置application.yml文件 5. 创建公用的实体类 项目结构 2. 创建controller层 3. 创建service层 4. 创建mapper层 5. 创建xml文件 6. 使用postman进行测试&#xff0c;测试结果如下…

项目中使用消息队列改进——基于RabbitMQ

使用 RabbitMQ 实现消息队列 导入依赖 <!--AMQP依赖&#xff0c;包含RabbitMQ--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </dependency> <!--防止消息转…