一.SPI简介
SPI是许多不同设备使用的常见通信协议。例如,SD卡模块、RFID读卡器模块和2.4GHz无线发射机/接收器均使用SPI与微控制器进行通信。
SPI是串行外设接口(Serial Peripheral Interface)的缩写,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB 的布局上节省空间,提供方便,正是出于这种简单易用的特性,越来越多的芯片集成了这种通信协议。
SPI的一个独特好处是数据可以不间断地传输。任何数量的位都可以在连续流中发送或接收。使用I2C和UART,数据以数据包方式发送,仅限于特定数量的位。启动和停止条件定义每个数据包的开始和结束,因此数据在传输过程中中断。
通过SPI通信的设备处于主从关系中。主机是控制装置(通常是微控制器),而从机(通常是传感器、显示器或内存芯片)接受主机的指令。SPI最简单的配置是单主机、单从机系统,但一个主机可以控制多个从机。
MOSI(主机输出/从机输入)——主机向从机发送数据的线
MISO(主机输入/从机输出)——从机向主机发送数据的线
SCLK(时钟)——时钟信号线
SS/CS(从机选择/芯片选择)——用于主机选择给哪个从机发送数据的线
二.SPI的工作原理
时钟:
时钟是一个振荡信号,它告诉接收端在确切的时机对数据线上的信号进行采样。每个时钟周期传输一位数据,因此数据传输的速度由时钟信号的频率决定。SPI通信始终由主发起,并由主机配置和产生时钟信号。
设备共享时钟信号的任何通信协议都称为同步通信协议。SPI是一种同步通信协议。也有不使用时钟信号的异步方法。例如,在 UART通信中,双方被设置为预先配置的波特速率,该速率和时间决定数据传输的速度和时间。
从机选择:
主机可以通过将从机的CS/SS线设置为低电平来选择它想与哪个从机通信。在闲置、非传输状态下,从机选择线保持在高压水平。主机上如果可以提供多个CS/SS 引脚,允许多个从机并行连接。如果只有一个CS/SS 引脚存在,多个从机可以通过菊花链的形式连接到主机。
SPI数据传输原理:
主机输出时钟信号:
主机拉低SS/CS片选信号,激活对应从机:
主机通过MOSI线发送数据给从机,一次发送一位,从机读取收到的数据位:
如果需要响应,从机则通过MISO线返回数据,一次发送一位,主机读取收到的数据位:
三.SPI陀螺仪设备驱动
陀螺仪原理:
角速度计
在三轴角速度计中,这三个轴通常表示物体绕空间中的三个互相垂直的轴旋转的角速度。具体定义如下:
- X轴(Roll轴): 绕X轴的旋转产生的角速度。
- Y轴(Pitch轴): 绕Y轴的旋转产生的角速度。
- Z轴(Yaw轴): 绕Z轴的旋转产生的角速度。
加速度计
在三轴加速度计中,同样是以X轴、Y轴和Z轴为基准,表示物体在空间中的三个方向上的加速度。具体定义如下:
- X轴: 物体在X轴方向上的加速度。
- Y轴: 物体在Y轴方向上的加速度。
- Z轴: 物体在Z轴方向上的加速度。
spi_driver 结构体:
Linux 内核使用 spi_driver 结构体来表示 spi 设备驱 动,我们在编写 SPI 设备驱动的时候需要实 现 spi_driver 。spi_driver 结构体定义在 include/linux/spi/spi.h 文件中,结构体内容如下:
struct spi_driver { const struct spi_device_id *id_table; int (*probe)(struct spi_device *spi); int (*remove)(struct spi_device *spi); void (*shutdown)(struct spi_device *spi); struct device_driver driver;
};
spi_driver 注册函数为 spi_register_driver,函数原型如下:
int spi_register_driver(struct spi_driver *sdrv)
sdrv:要注册的 spi_driver。 返回值:0,注册成功;赋值,注册失败。
spi_unregister_driver 函 数完成 spi_driver 的注销,函数原型如下:
void spi_unregister_driver(struct spi_driver *sdrv)
sdrv:要注销的 spi_driver。返回值:无。
ICM20608陀螺仪驱动:
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of_gpio.h>
#include <linux/semaphore.h>
#include <linux/timer.h>
#include <linux/i2c.h>
#include <linux/spi/spi.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include "icm20608reg.h"#define ICM20608_CNT 1
#define ICM20608_NAME "icm20608"struct icm20608_dev {dev_t devid; /* 设备号 */struct cdev cdev; /* cdev */struct class *class; /* 类 */struct device *device; /* 设备 */struct device_node *nd; /* 设备节点 */int major; /* 主设备号 */void *private_data; /* 私有数据 */signed int gyro_x_adc; /* 陀螺仪X轴原始值 */signed int gyro_y_adc; /* 陀螺仪Y轴原始值 */signed int gyro_z_adc; /* 陀螺仪Z轴原始值 */signed int accel_x_adc; /* 加速度计X轴原始值 */signed int accel_y_adc; /* 加速度计Y轴原始值 */signed int accel_z_adc; /* 加速度计Z轴原始值 */signed int temp_adc; /* 温度原始值 */
};static struct icm20608_dev icm20608dev;/** @description : 从icm20608读取多个寄存器数据* @param - dev: icm20608设备* @param - reg: 要读取的寄存器首地址* @param - val: 读取到的数据* @param - len: 要读取的数据长度* @return : 操作结果*/
static int icm20608_read_regs(struct icm20608_dev *dev, u8 reg, void *buf, int len)
{int ret = -1;unsigned char txdata[1];unsigned char * rxdata;struct spi_message m;struct spi_transfer *t;struct spi_device *spi = (struct spi_device *)dev->private_data;t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL); /* 申请内存 */if(!t) {return -ENOMEM;}rxdata = kzalloc(sizeof(char) * len, GFP_KERNEL); /* 申请内存 */if(!rxdata) {goto out1;}/* 一共发送len+1个字节的数据,第一个字节为寄存器首地址,一共要读取len个字节长度的数据,*/txdata[0] = reg | 0x80; /* 写数据的时候首寄存器地址bit8要置1 */ t->tx_buf = txdata; /* 要发送的数据 */t->rx_buf = rxdata; /* 要读取的数据 */t->len = len+1; /* t->len=发送的长度+读取的长度 */spi_message_init(&m); /* 初始化spi_message */spi_message_add_tail(t, &m);/* 将spi_transfer添加到spi_message队列 */ret = spi_sync(spi, &m); /* 同步发送 */if(ret) {goto out2;}memcpy(buf , rxdata+1, len); /* 只需要读取的数据 */out2:kfree(rxdata); /* 释放内存 */
out1: kfree(t); /* 释放内存 */return ret;
}/** @description : 向icm20608多个寄存器写入数据* @param - dev: icm20608设备* @param - reg: 要写入的寄存器首地址* @param - val: 要写入的数据缓冲区* @param - len: 要写入的数据长度* @return : 操作结果*/
static s32 icm20608_write_regs(struct icm20608_dev *dev, u8 reg, u8 *buf, u8 len)
{int ret = -1;unsigned char *txdata;struct spi_message m;struct spi_transfer *t;struct spi_device *spi = (struct spi_device *)dev->private_data;t = kzalloc(sizeof(struct spi_transfer), GFP_KERNEL); /* 申请内存 */if(!t) {return -ENOMEM;}txdata = kzalloc(sizeof(char)+len, GFP_KERNEL);if(!txdata) {goto out1;}/* 一共发送len+1个字节的数据,第一个字节为寄存器首地址,len为要写入的寄存器的集合,*/*txdata = reg & ~0x80; /* 写数据的时候首寄存器地址bit8要清零 */memcpy(txdata+1, buf, len); /* 把len个寄存器拷贝到txdata里,等待发送 */t->tx_buf = txdata; /* 要发送的数据 */t->len = len+1; /* t->len=发送的长度+读取的长度 */spi_message_init(&m); /* 初始化spi_message */spi_message_add_tail(t, &m);/* 将spi_transfer添加到spi_message队列 */ret = spi_sync(spi, &m); /* 同步发送 */if(ret) {goto out2;}out2:kfree(txdata); /* 释放内存 */
out1:kfree(t); /* 释放内存 */return ret;
}/** @description : 读取icm20608指定寄存器值,读取一个寄存器* @param - dev: icm20608设备* @param - reg: 要读取的寄存器* @return : 读取到的寄存器值*/
static unsigned char icm20608_read_onereg(struct icm20608_dev *dev, u8 reg)
{u8 data = 0;icm20608_read_regs(dev, reg, &data, 1);return data;
}/** @description : 向icm20608指定寄存器写入指定的值,写一个寄存器* @param - dev: icm20608设备* @param - reg: 要写的寄存器* @param - data: 要写入的值* @return : 无*/ static void icm20608_write_onereg(struct icm20608_dev *dev, u8 reg, u8 value)
{u8 buf = value;icm20608_write_regs(dev, reg, &buf, 1);
}/** @description : 读取ICM20608的数据,读取原始数据,包括三轴陀螺仪、* : 三轴加速度计和内部温度。* @param - dev : ICM20608设备* @return : 无。*/
void icm20608_readdata(struct icm20608_dev *dev)
{unsigned char data[14] = { 0 };icm20608_read_regs(dev, ICM20_ACCEL_XOUT_H, data, 14);dev->accel_x_adc = (signed short)((data[0] << 8) | data[1]); dev->accel_y_adc = (signed short)((data[2] << 8) | data[3]); dev->accel_z_adc = (signed short)((data[4] << 8) | data[5]); dev->temp_adc = (signed short)((data[6] << 8) | data[7]); dev->gyro_x_adc = (signed short)((data[8] << 8) | data[9]); dev->gyro_y_adc = (signed short)((data[10] << 8) | data[11]);dev->gyro_z_adc = (signed short)((data[12] << 8) | data[13]);
}/** @description : 打开设备* @param - inode : 传递给驱动的inode* @param - filp : 设备文件,file结构体有个叫做pr似有ate_data的成员变量* 一般在open的时候将private_data似有向设备结构体。* @return : 0 成功;其他 失败*/
static int icm20608_open(struct inode *inode, struct file *filp)
{filp->private_data = &icm20608dev; /* 设置私有数据 */return 0;
}/** @description : 从设备读取数据 * @param - filp : 要打开的设备文件(文件描述符)* @param - buf : 返回给用户空间的数据缓冲区* @param - cnt : 要读取的数据长度* @param - offt : 相对于文件首地址的偏移* @return : 读取的字节数,如果为负值,表示读取失败*/
static ssize_t icm20608_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off)
{signed int data[7];long err = 0;struct icm20608_dev *dev = (struct icm20608_dev *)filp->private_data;icm20608_readdata(dev);data[0] = dev->gyro_x_adc;data[1] = dev->gyro_y_adc;data[2] = dev->gyro_z_adc;data[3] = dev->accel_x_adc;data[4] = dev->accel_y_adc;data[5] = dev->accel_z_adc;data[6] = dev->temp_adc;err = copy_to_user(buf, data, sizeof(data));return 0;
}/** @description : 关闭/释放设备* @param - filp : 要关闭的设备文件(文件描述符)* @return : 0 成功;其他 失败*/
static int icm20608_release(struct inode *inode, struct file *filp)
{return 0;
}/* icm20608操作函数 */
static const struct file_operations icm20608_ops = {.owner = THIS_MODULE,.open = icm20608_open,.read = icm20608_read,.release = icm20608_release,
};/** ICM20608内部寄存器初始化函数 * @param : 无* @return : 无*/
void icm20608_reginit(void)
{u8 value = 0;icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x80);mdelay(50);icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_1, 0x01);mdelay(50);value = icm20608_read_onereg(&icm20608dev, ICM20_WHO_AM_I);printk("ICM20608 ID = %#X\r\n", value); icm20608_write_onereg(&icm20608dev, ICM20_SMPLRT_DIV, 0x00); /* 输出速率是内部采样率 */icm20608_write_onereg(&icm20608dev, ICM20_GYRO_CONFIG, 0x18); /* 陀螺仪±2000dps量程 */icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG, 0x18); /* 加速度计±16G量程 */icm20608_write_onereg(&icm20608dev, ICM20_CONFIG, 0x04); /* 陀螺仪低通滤波BW=20Hz */icm20608_write_onereg(&icm20608dev, ICM20_ACCEL_CONFIG2, 0x04); /* 加速度计低通滤波BW=21.2Hz */icm20608_write_onereg(&icm20608dev, ICM20_PWR_MGMT_2, 0x00); /* 打开加速度计和陀螺仪所有轴 */icm20608_write_onereg(&icm20608dev, ICM20_LP_MODE_CFG, 0x00); /* 关闭低功耗 */icm20608_write_onereg(&icm20608dev, ICM20_FIFO_EN, 0x00); /* 关闭FIFO */
}/** @description : spi驱动的probe函数,当驱动与* 设备匹配以后此函数就会执行* @param - client : i2c设备* @param - id : i2c设备ID* */
static int icm20608_probe(struct spi_device *spi)
{/* 1、构建设备号 */if (icm20608dev.major) {icm20608dev.devid = MKDEV(icm20608dev.major, 0);register_chrdev_region(icm20608dev.devid, ICM20608_CNT, ICM20608_NAME);} else {alloc_chrdev_region(&icm20608dev.devid, 0, ICM20608_CNT, ICM20608_NAME);icm20608dev.major = MAJOR(icm20608dev.devid);}/* 2、注册设备 */cdev_init(&icm20608dev.cdev, &icm20608_ops);cdev_add(&icm20608dev.cdev, icm20608dev.devid, ICM20608_CNT);/* 3、创建类 */icm20608dev.class = class_create(THIS_MODULE, ICM20608_NAME);if (IS_ERR(icm20608dev.class)) {return PTR_ERR(icm20608dev.class);}/* 4、创建设备 */icm20608dev.device = device_create(icm20608dev.class, NULL, icm20608dev.devid, NULL, ICM20608_NAME);if (IS_ERR(icm20608dev.device)) {return PTR_ERR(icm20608dev.device);}/*初始化spi_device */spi->mode = SPI_MODE_0; /*MODE0,CPOL=0,CPHA=0*/spi_setup(spi);icm20608dev.private_data = spi; /* 设置私有数据 *//* 初始化ICM20608内部寄存器 */icm20608_reginit(); return 0;
}/** @description : i2c驱动的remove函数,移除i2c驱动的时候此函数会执行* @param - client : i2c设备* @return : 0,成功;其他负值,失败*/
static int icm20608_remove(struct spi_device *spi)
{/* 删除设备 */cdev_del(&icm20608dev.cdev);unregister_chrdev_region(icm20608dev.devid, ICM20608_CNT);/* 注销掉类和设备 */device_destroy(icm20608dev.class, icm20608dev.devid);class_destroy(icm20608dev.class);return 0;
}/* 传统匹配方式ID列表 */
static const struct spi_device_id icm20608_id[] = {{"alientek,icm20608", 0}, {}
};/* 设备树匹配列表 */
static const struct of_device_id icm20608_of_match[] = {{ .compatible = "alientek,icm20608" },{ /* Sentinel */ }
};/* SPI驱动结构体 */
static struct spi_driver icm20608_driver = {.probe = icm20608_probe,.remove = icm20608_remove,.driver = {.owner = THIS_MODULE,.name = "icm20608",.of_match_table = icm20608_of_match, },.id_table = icm20608_id,
};/** @description : 驱动入口函数* @param : 无* @return : 无*/
static int __init icm20608_init(void)
{return spi_register_driver(&icm20608_driver);
}/** @description : 驱动出口函数* @param : 无* @return : 无*/
static void __exit icm20608_exit(void)
{spi_unregister_driver(&icm20608_driver);
}module_init(icm20608_init);
module_exit(icm20608_exit);
MODULE_LICENSE("GPL");
#ifndef ICM20608_H
#define ICM20608_H
#define ICM20608G_ID 0XAF /* ID值 */
#define ICM20608D_ID 0XAE /* ID值 *//* ICM20608寄存器 *复位后所有寄存器地址都为0,除了*Register 107(0X6B) Power Management 1 = 0x40*Register 117(0X75) WHO_AM_I = 0xAF或0xAE*/
/* 陀螺仪和加速度自测(出产时设置,用于与用户的自检输出值比较) */
#define ICM20_SELF_TEST_X_GYRO 0x00
#define ICM20_SELF_TEST_Y_GYRO 0x01
#define ICM20_SELF_TEST_Z_GYRO 0x02
#define ICM20_SELF_TEST_X_ACCEL 0x0D
#define ICM20_SELF_TEST_Y_ACCEL 0x0E
#define ICM20_SELF_TEST_Z_ACCEL 0x0F/* 陀螺仪静态偏移 */
#define ICM20_XG_OFFS_USRH 0x13
#define ICM20_XG_OFFS_USRL 0x14
#define ICM20_YG_OFFS_USRH 0x15
#define ICM20_YG_OFFS_USRL 0x16
#define ICM20_ZG_OFFS_USRH 0x17
#define ICM20_ZG_OFFS_USRL 0x18#define ICM20_SMPLRT_DIV 0x19
#define ICM20_CONFIG 0x1A
#define ICM20_GYRO_CONFIG 0x1B
#define ICM20_ACCEL_CONFIG 0x1C
#define ICM20_ACCEL_CONFIG2 0x1D
#define ICM20_LP_MODE_CFG 0x1E
#define ICM20_ACCEL_WOM_THR 0x1F
#define ICM20_FIFO_EN 0x23
#define ICM20_FSYNC_INT 0x36
#define ICM20_INT_PIN_CFG 0x37
#define ICM20_INT_ENABLE 0x38
#define ICM20_INT_STATUS 0x3A/* 加速度输出 */
#define ICM20_ACCEL_XOUT_H 0x3B
#define ICM20_ACCEL_XOUT_L 0x3C
#define ICM20_ACCEL_YOUT_H 0x3D
#define ICM20_ACCEL_YOUT_L 0x3E
#define ICM20_ACCEL_ZOUT_H 0x3F
#define ICM20_ACCEL_ZOUT_L 0x40/* 温度输出 */
#define ICM20_TEMP_OUT_H 0x41
#define ICM20_TEMP_OUT_L 0x42/* 陀螺仪输出 */
#define ICM20_GYRO_XOUT_H 0x43
#define ICM20_GYRO_XOUT_L 0x44
#define ICM20_GYRO_YOUT_H 0x45
#define ICM20_GYRO_YOUT_L 0x46
#define ICM20_GYRO_ZOUT_H 0x47
#define ICM20_GYRO_ZOUT_L 0x48#define ICM20_SIGNAL_PATH_RESET 0x68
#define ICM20_ACCEL_INTEL_CTRL 0x69
#define ICM20_USER_CTRL 0x6A
#define ICM20_PWR_MGMT_1 0x6B
#define ICM20_PWR_MGMT_2 0x6C
#define ICM20_FIFO_COUNTH 0x72
#define ICM20_FIFO_COUNTL 0x73
#define ICM20_FIFO_R_W 0x74
#define ICM20_WHO_AM_I 0x75/* 加速度静态偏移 */
#define ICM20_XA_OFFSET_H 0x77
#define ICM20_XA_OFFSET_L 0x78
#define ICM20_YA_OFFSET_H 0x7A
#define ICM20_YA_OFFSET_L 0x7B
#define ICM20_ZA_OFFSET_H 0x7D
#define ICM20_ZA_OFFSET_L 0x7E#endif
应用编程测试:
#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include <poll.h>
#include <sys/select.h>
#include <sys/time.h>
#include <signal.h>
#include <fcntl.h>/** @description : main主程序* @param - argc : argv数组元素个数* @param - argv : 具体参数* @return : 0 成功;其他 失败*/
int main(int argc, char *argv[])
{int fd;char *filename;signed int databuf[7];unsigned char data[14];signed int gyro_x_adc, gyro_y_adc, gyro_z_adc;signed int accel_x_adc, accel_y_adc, accel_z_adc;signed int temp_adc;float gyro_x_act, gyro_y_act, gyro_z_act;float accel_x_act, accel_y_act, accel_z_act;float temp_act;int ret = 0;if (argc != 2) {printf("Error Usage!\r\n");return -1;}filename = argv[1];fd = open(filename, O_RDWR);if(fd < 0) {printf("can't open file %s\r\n", filename);return -1;}while (1) {ret = read(fd, databuf, sizeof(databuf));if(ret == 0) { /* 数据读取成功 */gyro_x_adc = databuf[0];gyro_y_adc = databuf[1];gyro_z_adc = databuf[2];accel_x_adc = databuf[3];accel_y_adc = databuf[4];accel_z_adc = databuf[5];temp_adc = databuf[6];/* 计算实际值 */gyro_x_act = (float)(gyro_x_adc) / 16.4;gyro_y_act = (float)(gyro_y_adc) / 16.4;gyro_z_act = (float)(gyro_z_adc) / 16.4;accel_x_act = (float)(accel_x_adc) / 2048;accel_y_act = (float)(accel_y_adc) / 2048;accel_z_act = (float)(accel_z_adc) / 2048;temp_act = ((float)(temp_adc) - 25 ) / 326.8 + 25;printf("\r\n原始值:\r\n");printf("gx = %d, gy = %d, gz = %d\r\n", gyro_x_adc, gyro_y_adc, gyro_z_adc);printf("ax = %d, ay = %d, az = %d\r\n", accel_x_adc, accel_y_adc, accel_z_adc);printf("temp = %d\r\n", temp_adc);printf("实际值:");printf("act gx = %.2f°/S, act gy = %.2f°/S, act gz = %.2f°/S\r\n", gyro_x_act, gyro_y_act, gyro_z_act);printf("act ax = %.2fg, act ay = %.2fg, act az = %.2fg\r\n", accel_x_act, accel_y_act, accel_z_act);printf("act temp = %.2f°C\r\n", temp_act);}usleep(100000); /*100ms */}close(fd); /* 关闭文件 */ return 0;
}