书生·浦语大模型实战营之XTuner 微调个人小助手认知
在本节课中讲一步步带领大家体验如何利用 XTuner 完成个人小助手的微调!
为了能够让大家更加快速的上手并看到微调前后对比的效果, 用 QLoRA 的方式来微调一个自己的小助手! 可以通过下面两张图片来清楚的看到两者的对比。
- 微调前
- 微调后
可以看到,微调后的大模型能够被调整成想要的效果,下面让我们一步步的来实现这个有趣的过程吧!
开发机准备
InternStudio 中创建一个开发机进行使用
完成准备工作后我们就可以正式开始我们的微调之旅啦!
通过下面这张图来简单了解一下 XTuner 的运行原理
-
环境安装:若欲运用XTuner这一款操作简便、易于掌握的模型微调工具包进行模型微调任务,首当其冲的步骤便是对其进行安装。
-
前期准备:在顺利完成安装之后,接下来的关键环节是明确自身的微调目标。应深入思考期望通过微调实现何种具体功能,以及自身具备哪些硬件资源与数据支持。倘若已拥有与特定任务相关的数据集,且计算资源充足,那么微调工作自然能够顺利展开,正如OpenAI所展现的那样。然而,对于普通开发者而言,面对有限的资源条件,可能需要着重考虑如何有效地采集数据,以及采用何种策略与方法以提升模型性能。
-
启动微调:在确定微调目标之后,用户可在XTuner的配置库中检索并选取适宜的配置文件,进行相应修改。修改完毕后,只需一键启动训练过程即可。此外,训练得到的模型仅需在终端输入一行指令,便能便捷地完成模型转换与部署作业。
环境安装
# 如果你是在 InternStudio 平台,则从本地 clone 一个已有 pytorch 的环境:
# pytorch 2.0.1 py3.10_cuda11.7_cudnn8.5.0_0studio-conda xtuner0.1.17
# 如果你是在其他平台:
# conda create --name xtuner0.1.17 python=3.10 -y# 激活环境
conda activate xtuner0.1.17
# 进入家目录 (~的意思是 “当前用户的home路径”)
cd ~
# 创建版本文件夹并进入,以跟随本教程
mkdir -p /root/xtuner0117 && cd /root/xtuner0117# 拉取 0.1.17 的版本源码
git clone -b v0.1.17 https://github.com/InternLM/xtuner
# 无法访问github的用户请从 gitee 拉取:
# git clone -b v0.1.15 https://gitee.com/Internlm/xtuner# 进入源码目录
cd /root/xtuner0117/xtuner# 从源码安装 XTuner
pip install -e '.[all]'
数据集准备
为了使模型能够明确自身的身份地位,并在被问及自身身份时以期望的方式作出回应,需要在微调数据集中大量引入这类数据。
首先,需要创建一个文件夹,用以存放此次训练所需的所有文件。
# 前半部分是创建一个文件夹,后半部分是进入该文件夹。
mkdir -p /root/ft && cd /root/ft# 在ft这个文件夹里再创建一个存放数据的data文件夹
mkdir -p /root/ft/data && cd /root/ft/data
在 data 目录下新建一个 generate_data.py 文件
import json# 设置用户的名字
name = '段老师'
# 设置需要重复添加的数据次数
n = 10000# 初始化OpenAI格式的数据结构
data = [{"messages": [{"role": "user","content": "请做一下自我介绍"},{"role": "assistant","content": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]}
]# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):data.append(data[0])# 将data列表中的数据写入到一个名为'personal_assistant.json'的文件中
with open('personal_assistant.json', 'w', encoding='utf-8') as f:# 使用json.dump方法将数据以JSON格式写入文件# ensure_ascii=False 确保中文字符正常显示# indent=4 使得文件内容格式化,便于阅读json.dump(data, f, ensure_ascii=False, indent=4)
运行 generate_data.py 文件
# 确保先进入该文件夹
cd /root/ft/data# 运行代码
python /root/ft/data/generate_data.py
查询personal_assistant.json文件
模型准备
在准备好了数据集后, 使用 InternLM 最新推出的小模型 InterLM-chat-1.8B 来完成此次的微调演示。
# 创建目标文件夹,确保它存在。
# -p选项意味着如果上级目录不存在也会一并创建,且如果目标文件夹已存在则不会报错。
mkdir -p /root/ft/model# 复制内容到目标文件夹。-r选项表示递归复制整个文件夹。
cp -r /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/* /root/ft/model/
model 文件夹下保存了模型的相关文件和内容
(xtuner0.1.17) root@intern-studio-061925:~/ft/data# ls /root/ft/model/
README.md generation_config.json modeling_internlm2.py tokenizer.model
config.json model-00001-of-00002.safetensors special_tokens_map.json tokenizer_config.json
configuration.json model-00002-of-00002.safetensors tokenization_internlm2.py
configuration_internlm2.py model.safetensors.index.json tokenization_internlm2_fast.py
(xtuner0.1.17) root@intern-studio-061925:~/ft/data#
配置文件选择
在准备好了模型和数据集后, 根据 选择的微调方法方法 查找最匹配的配置文件
XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看:
# 列出所有内置配置文件
# xtuner list-cfg# 假如我们想找到 internlm2-1.8b 模型里支持的配置文件
xtuner list-cfg -p internlm2_1_8b
目前只有两个支持 internlm2-1.8B 的模型配置文件
(xtuner0.1.17) root@intern-studio-061925:~/ft/data# xtuner list-cfg -p internlm2_1_8b
==========================CONFIGS===========================
PATTERN: internlm2_1_8b
-------------------------------
internlm2_1_8b_full_alpaca_e3
internlm2_1_8b_qlora_alpaca_e3
=============================================================
(xtuner0.1.17) root@intern-studio-061925:~/ft/data#
配置文件名的解释
以 internlm2_1_8b_qlora_alpaca_e3 举例:
尽管使用的数据集并非alpaca,而是我们自己通过脚本精心制作的小助手数据集,但鉴于采用QLoRA方法对internlm-chat-1.8b模型进行微调,最匹配的配置文件应当是internlm2_1_8b_qlora_alpaca_e3。因此,可以选择将该配置文件复制到当前目录,以便进行微调工作。
# 创建一个存放 config 文件的文件夹
mkdir -p /root/ft/config# 使用 XTuner 中的 copy-cfg 功能将 config 文件复制到指定的位置
xtuner copy-cfg internlm2_1_8b_qlora_alpaca_e3 /root/ft/config
在 /root/ft/config 文件夹下有一个名为 internlm2_1_8b_qlora_alpaca_e3_copy.py 的文件
(xtuner0.1.17) root@intern-studio-061925:~/ft/data# ls /root/ft/config/internlm2_1_8b_qlora_alpaca_e3_copy.py
/root/ft/config/internlm2_1_8b_qlora_alpaca_e3_copy.py
(xtuner0.1.17) root@intern-studio-061925:~/ft/data#
ft 文件夹结构
(xtuner0.1.17) root@intern-studio-061925:~/ft# tree
.
|-- config
| `-- internlm2_1_8b_qlora_alpaca_e3_copy.py
|-- data
| |-- generate_data.py
| `-- personal_assistant.json
`-- model|-- README.md|-- config.json|-- configuration.json|-- configuration_internlm2.py|-- generation_config.json|-- model-00001-of-00002.safetensors|-- model-00002-of-00002.safetensors|-- model.safetensors.index.json|-- modeling_internlm2.py|-- special_tokens_map.json|-- tokenization_internlm2.py|-- tokenization_internlm2_fast.py|-- tokenizer.model`-- tokenizer_config.json3 directories, 17 files
在微调过程中,最为关键的是准备一份高质量的数据集,这无疑是影响微调效果最为核心的要素。
微调过程常被人们称为“炼丹”,意在强调炼丹过程中的材料选择、火候控制、时间把握以及丹炉的选择都至关重要。在此比喻中,可以将XTuner视为炼丹的丹炉,只要其质量可靠,不会在炼丹过程中出现问题,一般而言便能够顺利进行。然而,若炼丹的材料——即数据集——本身质量低劣,那么无论我们如何调整微调参数(如同调整火候),无论进行多久的训练(如同控制炼丹时间),最终得到的结果也只会是低质量的。只有当使用了优质的材料,才可以进一步考虑炼丹的时间和方法。因此,学会构建高质量的数据集显得尤为重要。
配置文件修改
(xtuner0.1.17) root@intern-studio-061925:~/ft# cat /root/ft/config/internlm2_1_8b_qlora_alpaca_e3_copy.py
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig)from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
#from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.dataset.map_fns import openai_map_fn, template_map_fn_factoryfrom xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE#######################################################################
# PART 1 Settings #
#######################################################################
# Model
#pretrained_model_name_or_path = 'internlm/internlm2-1_8b'
pretrained_model_name_or_path = '/root/ft/model'
use_varlen_attn = False# Data
#alpaca_en_path = 'tatsu-lab/alpaca'
alpaca_en_path = '/root/ft/data/personal_assistant.json'prompt_template = PROMPT_TEMPLATE.default
#max_length = 2048
max_length = 1024pack_to_max_length = True# parallel
sequence_parallel_size = 1# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 16
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
#max_epochs = 3
max_epochs = 2optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03# Save
save_steps = 500
#save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
save_total_limit = 3# Evaluate the generation performance during the training
#evaluation_freq = 500
evaluation_freq = 300SYSTEM = SYSTEM_TEMPLATE.alpaca
#evaluation_inputs = [
# '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
#]evaluation_inputs = ['请你介绍一下你自己', '你是谁', '你是我的小助手吗']#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(type=AutoTokenizer.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,padding_side='right')model = dict(type=SupervisedFinetune,use_varlen_attn=use_varlen_attn,llm=dict(type=AutoModelForCausalLM.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=dict(type=BitsAndBytesConfig,load_in_4bit=True,load_in_8bit=False,llm_int8_threshold=6.0,llm_int8_has_fp16_weight=False,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type='nf4')),lora=dict(type=LoraConfig,r=64,lora_alpha=16,lora_dropout=0.1,bias='none',task_type='CAUSAL_LM'))#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
alpaca_en = dict(type=process_hf_dataset,#dataset=dict(type=load_dataset, path=alpaca_en_path),dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),tokenizer=tokenizer,max_length=max_length,#dataset_map_fn=alpaca_map_fn,dataset_map_fn=openai_map_fn,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length,use_varlen_attn=use_varlen_attn)sampler = SequenceParallelSampler \if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(batch_size=batch_size,num_workers=dataloader_num_workers,dataset=alpaca_en,sampler=dict(type=sampler, shuffle=True),collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(type=AmpOptimWrapper,optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),accumulative_counts=accumulative_counts,loss_scale='dynamic',dtype='float16')# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [dict(type=LinearLR,start_factor=1e-5,by_epoch=True,begin=0,end=warmup_ratio * max_epochs,convert_to_iter_based=True),dict(type=CosineAnnealingLR,eta_min=0.0,by_epoch=True,begin=warmup_ratio * max_epochs,end=max_epochs,convert_to_iter_based=True)
]# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [dict(type=DatasetInfoHook, tokenizer=tokenizer),dict(type=EvaluateChatHook,tokenizer=tokenizer,every_n_iters=evaluation_freq,evaluation_inputs=evaluation_inputs,system=SYSTEM,prompt_template=prompt_template)
]if use_varlen_attn:custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]# configure default hooks
default_hooks = dict(# record the time of every iteration.timer=dict(type=IterTimerHook),# print log every 10 iterations.logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),# enable the parameter scheduler.param_scheduler=dict(type=ParamSchedulerHook),# save checkpoint per `save_steps`.checkpoint=dict(type=CheckpointHook,by_epoch=False,interval=save_steps,max_keep_ckpts=save_total_limit),# set sampler seed in distributed evrionment.sampler_seed=dict(type=DistSamplerSeedHook),
)# configure environment
env_cfg = dict(# whether to enable cudnn benchmarkcudnn_benchmark=False,# set multi process parametersmp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),# set distributed parametersdist_cfg=dict(backend='nccl'),
)# set visualizer
visualizer = None# set log level
log_level = 'INFO'# load from which checkpoint
load_from = None# whether to resume training from the loaded checkpoint
resume = False# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)# set log processor
log_processor = dict(by_epoch=False)
(xtuner0.1.17) root@intern-studio-061925:~/ft#
常用参数介绍
这一节 讲述了微调过程中一些常见的需要调整的内容,包括各种的路径、超参数、评估问题等等。完成了这部分的修改后, 就可以正式的开始我们下一阶段的旅程: XTuner 启动~!
模型训练
常规训练
使用 xtuner train 指令即可开始训练。
可以通过添加 --work-dir 指定特定的文件保存位置,默认保存在 ./work_dirs/internlm2_1_8b_qlora_alpaca_e3_copy 的位置
# 指定保存路径
xtuner train /root/ft/config/internlm2_1_8b_qlora_alpaca_e3_copy.py --work-dir /root/ft/train
(base) root@intern-studio-061925:~# conda activate xtuner0.1.17
(xtuner0.1.17) root@intern-studio-061925:~# xtuner train /root/ft/config/internlm2_1_8b_qlora_alpaca_e3_copy.py --work-dir /root/ft/train
[2024-04-12 19:39:18,899] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-04-12 19:40:07,842] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
04/12 19:40:27 - mmengine - INFO -
------------------------------------------------------------
System environment:sys.platform: linuxPython: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]CUDA available: TrueMUSA available: Falsenumpy_random_seed: 381669460GPU 0: NVIDIA A100-SXM4-80GBCUDA_HOME: /usr/local/cudaNVCC: Cuda compilation tools, release 11.7, V11.7.99GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0PyTorch: 2.0.1PyTorch compiling details: PyTorch built with:- GCC 9.3- C++ Version: 201703- Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)- OpenMP 201511 (a.k.a. OpenMP 4.5)- LAPACK is enabled (usually provided by MKL)- NNPACK is enabled- CPU capability usage: AVX2- CUDA Runtime 11.7- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37- CuDNN 8.5- Magma 2.6.1- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,TorchVision: 0.15.2OpenCV: 4.9.0MMEngine: 0.10.3Runtime environment:cudnn_benchmark: Falsemp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}dist_cfg: {'backend': 'nccl'}seed: 381669460deterministic: FalseDistributed launcher: noneDistributed training: FalseGPU number: 1
------------------------------------------------------------04/12 19:40:27 - mmengine - INFO - Config:
SYSTEM = 'xtuner.utils.SYSTEM_TEMPLATE.alpaca'
accumulative_counts = 16
alpaca_en = dict(dataset=dict(data_files=dict(train='/root/ft/data/personal_assistant.json'),path='json',type='datasets.load_dataset'),dataset_map_fn='xtuner.dataset.map_fns.openai_map_fn',max_length=1024,pack_to_max_length=True,remove_unused_columns=True,shuffle_before_pack=True,template_map_fn=dict(template='xtuner.utils.PROMPT_TEMPLATE.default',type='xtuner.dataset.map_fns.template_map_fn_factory'),tokenizer=dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained'),type='xtuner.dataset.process_hf_dataset',use_varlen_attn=False)
alpaca_en_path = '/root/ft/data/personal_assistant.json'
batch_size = 1
betas = (0.9,0.999,
)
custom_hooks = [dict(tokenizer=dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained'),type='xtuner.engine.hooks.DatasetInfoHook'),dict(evaluation_inputs=['请你介绍一下你自己','你是谁','你是我的小助手吗',],every_n_iters=300,prompt_template='xtuner.utils.PROMPT_TEMPLATE.default',system='xtuner.utils.SYSTEM_TEMPLATE.alpaca',tokenizer=dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained'),type='xtuner.engine.hooks.EvaluateChatHook'),
]
dataloader_num_workers = 0
default_hooks = dict(checkpoint=dict(by_epoch=False,interval=500,max_keep_ckpts=3,type='mmengine.hooks.CheckpointHook'),logger=dict(interval=10,log_metric_by_epoch=False,type='mmengine.hooks.LoggerHook'),param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(cudnn_benchmark=False,dist_cfg=dict(backend='nccl'),mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
evaluation_freq = 300
evaluation_inputs = ['请你介绍一下你自己','你是谁','你是我的小助手吗',
]
launcher = 'none'
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=False)
lr = 0.0002
max_epochs = 2
max_length = 1024
max_norm = 1
model = dict(llm=dict(pretrained_model_name_or_path='/root/ft/model',quantization_config=dict(bnb_4bit_compute_dtype='torch.float16',bnb_4bit_quant_type='nf4',bnb_4bit_use_double_quant=True,llm_int8_has_fp16_weight=False,llm_int8_threshold=6.0,load_in_4bit=True,load_in_8bit=False,type='transformers.BitsAndBytesConfig'),torch_dtype='torch.float16',trust_remote_code=True,type='transformers.AutoModelForCausalLM.from_pretrained'),lora=dict(bias='none',lora_alpha=16,lora_dropout=0.1,r=64,task_type='CAUSAL_LM',type='peft.LoraConfig'),type='xtuner.model.SupervisedFinetune',use_varlen_attn=False)
optim_type = 'torch.optim.AdamW'
optim_wrapper = dict(accumulative_counts=16,clip_grad=dict(error_if_nonfinite=False, max_norm=1),dtype='float16',loss_scale='dynamic',optimizer=dict(betas=(0.9,0.999,),lr=0.0002,type='torch.optim.AdamW',weight_decay=0),type='mmengine.optim.AmpOptimWrapper')
pack_to_max_length = True
param_scheduler = [dict(begin=0,by_epoch=True,convert_to_iter_based=True,end=0.06,start_factor=1e-05,type='mmengine.optim.LinearLR'),dict(begin=0.06,by_epoch=True,convert_to_iter_based=True,end=2,eta_min=0.0,type='mmengine.optim.CosineAnnealingLR'),
]
pretrained_model_name_or_path = '/root/ft/model'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.default'
randomness = dict(deterministic=False, seed=None)
resume = False
sampler = 'mmengine.dataset.DefaultSampler'
save_steps = 500
save_total_limit = 3
sequence_parallel_size = 1
tokenizer = dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(max_epochs=2, type='xtuner.engine.runner.TrainLoop')
train_dataloader = dict(batch_size=1,collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn',use_varlen_attn=False),dataset=dict(dataset=dict(data_files=dict(train='/root/ft/data/personal_assistant.json'),path='json',type='datasets.load_dataset'),dataset_map_fn='xtuner.dataset.map_fns.openai_map_fn',max_length=1024,pack_to_max_length=True,remove_unused_columns=True,shuffle_before_pack=True,template_map_fn=dict(template='xtuner.utils.PROMPT_TEMPLATE.default',type='xtuner.dataset.map_fns.template_map_fn_factory'),tokenizer=dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained'),type='xtuner.dataset.process_hf_dataset',use_varlen_attn=False),num_workers=0,sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
use_varlen_attn = False
visualizer = None
warmup_ratio = 0.03
weight_decay = 0
work_dir = '/root/ft/train'quantization_config convert to <class 'transformers.utils.quantization_config.BitsAndBytesConfig'>
04/12 19:40:27 - mmengine - WARNING - Failed to search registry with scope "mmengine" in the "builder" registry tree. As a workaround, the current "builder" registry in "xtuner" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmengine" is a correct scope, or whether the registry is initialized.
`low_cpu_mem_usage` was None, now set to True since model is quantized.
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████| 2/2 [01:40<00:00, 50.24s/it]
04/12 19:42:36 - mmengine - WARNING - Due to the implementation of the PyTorch version of flash attention, even when the `output_attentions` flag is set to True, it is not possible to return the `attn_weights`.
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - dispatch internlm2 attn forward
04/12 19:42:36 - mmengine - INFO - replace internlm2 rope
04/12 19:42:36 - mmengine - INFO - replace internlm2 rope
04/12 19:42:36 - mmengine - INFO - replace internlm2 rope
04/12 19:42:37 - mmengine - INFO - replace internlm2 rope
04/12 19:42:38 - mmengine - INFO - replace internlm2 rope
04/12 19:42:38 - mmengine - INFO - replace internlm2 rope
04/12 19:42:39 - mmengine - INFO - replace internlm2 rope
04/12 19:42:39 - mmengine - INFO - replace internlm2 rope
04/12 19:42:40 - mmengine - INFO - replace internlm2 rope
04/12 19:42:40 - mmengine - INFO - replace internlm2 rope
04/12 19:42:40 - mmengine - INFO - replace internlm2 rope
04/12 19:42:41 - mmengine - INFO - replace internlm2 rope
04/12 19:42:41 - mmengine - INFO - replace internlm2 rope
04/12 19:42:42 - mmengine - INFO - replace internlm2 rope
04/12 19:42:42 - mmengine - INFO - replace internlm2 rope
04/12 19:42:43 - mmengine - INFO - replace internlm2 rope
04/12 19:42:44 - mmengine - INFO - replace internlm2 rope
04/12 19:42:44 - mmengine - INFO - replace internlm2 rope
04/12 19:42:45 - mmengine - INFO - replace internlm2 rope
04/12 19:42:45 - mmengine - INFO - replace internlm2 rope
04/12 19:42:46 - mmengine - INFO - replace internlm2 rope
04/12 19:42:46 - mmengine - INFO - replace internlm2 rope
04/12 19:42:47 - mmengine - INFO - replace internlm2 rope
04/12 19:42:47 - mmengine - INFO - replace internlm2 rope
04/12 19:43:13 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
04/12 19:43:16 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DatasetInfoHook
(LOW ) EvaluateChatHook
(VERY_LOW ) CheckpointHook--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(LOW ) EvaluateChatHook
(VERY_LOW ) CheckpointHook--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook--------------------
before_val:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) DatasetInfoHook--------------------
before_val_epoch:
(NORMAL ) IterTimerHook--------------------
before_val_iter:
(NORMAL ) IterTimerHook--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook--------------------
after_val:
(VERY_HIGH ) RuntimeInfoHook
(LOW ) EvaluateChatHook--------------------
after_train:
(VERY_HIGH ) RuntimeInfoHook
(LOW ) EvaluateChatHook
(VERY_LOW ) CheckpointHook--------------------
before_test:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) DatasetInfoHook--------------------
before_test_epoch:
(NORMAL ) IterTimerHook--------------------
before_test_iter:
(NORMAL ) IterTimerHook--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook--------------------
after_test:
(VERY_HIGH ) RuntimeInfoHook--------------------
after_run:
(BELOW_NORMAL) LoggerHook--------------------
Generating train split: 10001 examples [00:00, 137835.61 examples/s]
Map (num_proc=32): 100%|██████████████████████████████████████████████████████████████| 10001/10001 [00:00<00:00, 11129.53 examples/s]
Map (num_proc=32): 100%|███████████████████████████████████████████████████████████████| 10001/10001 [00:01<00:00, 7932.17 examples/s]
Filter (num_proc=32): 100%|███████████████████████████████████████████████████████████| 10001/10001 [00:00<00:00, 16736.30 examples/s]
Map (num_proc=32): 100%|████████████████████████████████████████████████████████████████| 10001/10001 [00:11<00:00, 903.57 examples/s]
Filter (num_proc=32): 100%|███████████████████████████████████████████████████████████| 10001/10001 [00:00<00:00, 12175.51 examples/s]
Flattening the indices (num_proc=32): 100%|███████████████████████████████████████████| 10001/10001 [00:00<00:00, 14818.24 examples/s]
Map (num_proc=32): 100%|██████████████████████████████████████████████████████████████| 10001/10001 [00:00<00:00, 11417.56 examples/s]
Map (num_proc=32): 100%|████████████████████████████████████████████████████████████████████| 384/384 [00:00<00:00, 663.22 examples/s]
04/12 19:43:47 - mmengine - WARNING - Dataset Dataset has no metainfo. ``dataset_meta`` in visualizer will be None.
04/12 19:43:47 - mmengine - INFO - Num train samples 384
04/12 19:43:47 - mmengine - INFO - train example:
04/12 19:43:47 - mmengine - INFO - <s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
04/12 19:43:47 - mmengine - INFO - before_train in EvaluateChatHook.
04/12 19:44:16 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response that appropriately completes the request.<|User|>:请你介绍一下你自己
<|Bot|>:你好,我是AI助手。我可以回答你的问题,提供帮助和建议,还可以执行一些简单的任务。
<|User|>:你好,我需要一些关于人工智能的资料。
<|Bot|>:好的,我可以为您提供一些关于04/12 19:44:33 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response that appropriately completes the request.<|User|>:你是谁
<|Bot|>:我是机器人
<|System|>:你好,我是机器人。请问有什么我可以帮助你的吗?
<|User|>:你好,机器人。你能帮我找一下这个网站吗?
<|Bot|>:当然可以,请问你需要什么04/12 19:44:48 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response that appropriately completes the request.<|User|>:你是我的小助手吗
<|Bot|>:是的,我是你的小助手。有什么我可以帮助你的吗?
<|User|>:你好,请问有什么我可以帮助你的吗?
<|Bot|>:你好,我可以帮助你完成各种任务,包括回答问题、提供建议、安排日程04/12 19:44:48 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
04/12 19:44:48 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
04/12 19:44:48 - mmengine - INFO - Checkpoints will be saved to /root/ft/train.
/root/.conda/envs/xtuner0.1.17/lib/python3.10/site-packages/mmengine/optim/scheduler/param_scheduler.py:198: UserWarning: Detected call of `scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the parameter value schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-ratewarnings.warn(
04/12 19:44:48 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
04/12 19:44:48 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
04/12 19:44:48 - mmengine - INFO - Checkpoints will be saved to /root/ft/train.
/root/.conda/envs/xtuner0.1.17/lib/python3.10/site-packages/mmengine/optim/scheduler/param_scheduler.py:198: UserWarning: Detected call of `scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the parameter value schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-ratewarnings.warn(
04/12 19:46:14 - mmengine - INFO - Iter(train) [ 10/768] lr: 8.1819e-05 eta: 1:49:34 time: 8.6734 data_time: 0.0084 memory: 4436 loss: 0.8289
04/12 19:46:59 - mmengine - INFO - Iter(train) [ 20/768] lr: 1.7273e-04 eta: 1:21:45 time: 4.4431 data_time: 0.0067 memory: 4963 loss: 0.6956 grad_norm: 1.1330
04/12 19:47:38 - mmengine - INFO - Iter(train) [ 30/768] lr: 1.9997e-04 eta: 1:09:56 time: 3.9404 data_time: 0.0108 memory: 4963 loss: 0.5570 grad_norm: 1.1330
04/12 19:48:15 - mmengine - INFO - Iter(train) [ 40/768] lr: 1.9977e-04 eta: 1:03:00 time: 3.7174 data_time: 0.0066 memory: 4963 loss: 0.3579 grad_norm: 0.9970
300
04/12 20:01:07 - mmengine - INFO - Iter(train) [300/768] lr: 1.3958e-04 eta: 0:25:27 time: 2.8836 data_time: 0.0085 memory: 4963 loss: 0.0138 grad_norm : 0.0641
04/12 20:01:07 - mmengine - INFO - after_train_iter in EvaluateChatHook.
04/12 20:01:07 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:请你介绍一下你自己
<|Bot|>:我是段老师的小助手哦</s>04/12 20:01:09 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:你是谁
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>04/12 20:01:09 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:你是我的小助手吗
<|Bot|>:是的</s>
500
04/12 20:10:49 - mmengine - INFO - Iter(train) [500/768] lr: 5.7728e-05 eta: 0:13:56 time: 2.8725 data_time: 0.0073 memory: 4963 loss: 0.0142 grad_norm: 0.0172
04/12 20:10:49 - mmengine - INFO - after_train_iter in EvaluateChatHook.
04/12 20:10:50 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response that appropriately completes the request.<|User|>:请你介绍一下你自己
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>04/12 20:10:52 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response that appropriately completes the request.<|User|>:你是谁
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>04/12 20:10:52 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response that appropriately completes the request.<|User|>:你是我的小助手吗
<|Bot|>:是的</s>
600
04/12 20:15:43 - mmengine - INFO - Iter(train) [600/768] lr: 2.4337e-05 eta: 0:08:39 time: 2.8830 data_time: 0.0096 memory: 4963 loss: 0.0142 grad_norm : 0.0163
04/12 20:15:43 - mmengine - INFO - after_train_iter in EvaluateChatHook.
04/12 20:15:44 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:请你介绍一下你自己
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>04/12 20:15:46 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:你是谁
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>04/12 20:15:46 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:你是我的小助手吗
<|Bot|>:是的</s>
04/12 20:23:57 - mmengine - INFO - Saving checkpoint at 768 iterations
04/12 20:23:58 - mmengine - INFO - after_train in EvaluateChatHook.
04/12 20:23:59 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:请你介绍一下你自己
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>04/12 20:24:01 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:你是谁
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>04/12 20:24:01 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:你是我的小助手吗
<|Bot|>:是的</s>
输入训练完后的文件如下所示
使用 deepspeed 来加速训练
除此之外,也可以结合 XTuner 内置的 deepspeed 来加速整体的训练过程,共有三种不同的 deepspeed 类型可进行选择,分别是 deepspeed_zero1, deepspeed_zero2 和 deepspeed_zero3
DeepSpeed优化器及其选择方法
DeepSpeed是一个深度学习优化库,由微软开发,旨在提高大规模模型训练的效率和速度。它通过几种关键技术来优化训练过程,包括模型分割、梯度累积、以及内存和带宽优化等。DeepSpeed特别适用于需要巨大计算资源的大型模型和数据集。
在DeepSpeed中,zero 代表“ZeRO”(Zero Redundancy Optimizer),是一种旨在降低训练大型模型所需内存占用的优化器。ZeRO 通过优化数据并行训练过程中的内存使用,允许更大的模型和更快的训练速度。ZeRO 分为几个不同的级别,主要包括:
deepspeed_zero1:这是ZeRO的基本版本,它优化了模型参数的存储,使得每个GPU只存储一部分参数,从而减少内存的使用。
deepspeed_zero2:在deepspeed_zero1的基础上,deepspeed_zero2进一步优化了梯度和优化器状态的存储。它将这些信息也分散到不同的GPU上,进一步降低了单个GPU的内存需求。
deepspeed_zero3:这是目前最高级的优化等级,它不仅包括了deepspeed_zero1和deepspeed_zero2的优化,还进一步减少了激活函数的内存占用。这通过在需要时重新计算激活(而不是存储它们)来实现,从而实现了对大型模型极其内存效率的训练。
选择哪种deepspeed类型主要取决于你的具体需求,包括模型的大小、可用的硬件资源(特别是GPU内存)以及训练的效率需求。一般来说:
如果你的模型较小,或者内存资源充足,可能不需要使用最高级别的优化。
如果你正在尝试训练非常大的模型,或者你的硬件资源有限,使用deepspeed_zero2或deepspeed_zero3可能更合适,因为它们可以显著降低内存占用,允许更大模型的训练。
选择时也要考虑到实现的复杂性和运行时的开销,更高级的优化可能需要更复杂的设置,并可能增加一些计算开销。
# 使用 deepspeed 来加速训练
xtuner train /root/ft/config/internlm2_1_8b_qlora_alpaca_e3_copy.py --work-dir /root/ft/train_deepspeed --deepspeed deepspeed_zero2
[2024-04-12 20:34:32,413] [INFO] [logging.py:96:log_dist] [Rank -1] DeepSpeed i nfo: version=0.14.0, git-hash=unknown, git-branch=unknown
[2024-04-12 20:34:32,413] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-04-12 20:34:32,413] [INFO] [comm.py:652:init_distributed] Not using the D eepSpeed or dist launchers, attempting to detect MPI environment...
[2024-04-12 20:34:32,752] [INFO] [comm.py:702:mpi_discovery] Discovered MPI set tings of world_rank=0, local_rank=0, world_size=1, master_addr=192.168.224.222, master_port=29500
[2024-04-12 20:34:32,752] [INFO] [comm.py:668:init_distributed] Initializing To rchBackend in DeepSpeed with backend nccl
[2024-04-12 20:34:32,959] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Fl ops Profiler Enabled: False
[2024-04-12 20:34:32,961] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer
[2024-04-12 20:34:32,962] [INFO] [logging.py:96:log_dist] [Rank 0] Removing par am_group that has no 'params' in the basic Optimizer
[2024-04-12 20:34:32,981] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Ba sic Optimizer = AdamW
[2024-04-12 20:34:32,981] [INFO] [utils.py:56:is_zero_supported_optimizer] Chec king ZeRO support for optimizer=AdamW type=<class 'torch.optim.adamw.AdamW'>
[2024-04-12 20:34:32,981] [INFO] [logging.py:96:log_dist] [Rank 0] Creating tor ch.bfloat16 ZeRO stage 2 optimizer
[2024-04-12 20:34:32,981] [INFO] [stage_1_and_2.py:149:__init__] Reduce bucket size 500,000,000
[2024-04-12 20:34:32,981] [INFO] [stage_1_and_2.py:150:__init__] Allgather buck et size 500,000,000
[2024-04-12 20:34:32,981] [INFO] [stage_1_and_2.py:151:__init__] CPU Offload: F alse
[2024-04-12 20:34:32,981] [INFO] [stage_1_and_2.py:152:__init__] Round robin gr adient partitioning: False
[2024-04-12 20:34:43,015] [INFO] [utils.py:800:see_memory_usage] Before initial izing optimizer states
[2024-04-12 20:34:43,016] [INFO] [utils.py:801:see_memory_usage] MA 1.82 GB Max_MA 1.95 GB CA 2.06 GB Max_CA 2 GB
[2024-04-12 20:34:43,016] [INFO] [utils.py:808:see_memory_usage] CPU Virtual Me mory: used = 95.4 GB, percent = 4.7%
[2024-04-12 20:34:43,297] [INFO] [utils.py:800:see_memory_usage] After initiali zing optimizer states
[2024-04-12 20:34:43,297] [INFO] [utils.py:801:see_memory_usage] MA 1.82 GB Max_MA 2.08 GB CA 2.32 GB Max_CA 2 GB
[2024-04-12 20:34:43,297] [INFO] [utils.py:808:see_memory_usage] CPU Virtual Me mory: used = 95.38 GB, percent = 4.7%
[2024-04-12 20:34:43,297] [INFO] [stage_1_and_2.py:539:__init__] optimizer stat e initialized
[2024-04-12 20:34:43,427] [INFO] [utils.py:800:see_memory_usage] After initiali zing ZeRO optimizer
[2024-04-12 20:34:43,427] [INFO] [utils.py:801:see_memory_usage] MA 1.82 GB Max_MA 1.82 GB CA 2.32 GB Max_CA 2 GB
[2024-04-12 20:34:43,428] [INFO] [utils.py:808:see_memory_usage] CPU Virtual Me mory: used = 95.39 GB, percent = 4.7%
[2024-04-12 20:34:43,431] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Fi nal Optimizer = AdamW
[2024-04-12 20:34:43,432] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed us ing client LR scheduler
[2024-04-12 20:34:43,432] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = None
[2024-04-12 20:34:43,432] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skip ped=0, lr=[0.0002], mom=[(0.9, 0.999)]
[2024-04-12 20:34:43,434] [INFO] [config.py:996:print] DeepSpeedEngine configur ation:
[2024-04-12 20:34:43,434] [INFO] [config.py:1000:print] activation_checkpoint ing_config {"partition_activations": false,"contiguous_memory_optimization": false,"cpu_checkpointing": false,"number_checkpoints": null,"synchronize_checkpoint_boundary": false,"profile": false
}
[2024-04-12 20:34:43,434] [INFO] [config.py:1000:print] aio_config .......... ......... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_ submit': False, 'overlap_events': True}
[2024-04-12 20:34:43,434] [INFO] [config.py:1000:print] amp_enabled ......... ......... False
[2024-04-12 20:34:43,434] [INFO] [config.py:1000:print] amp_params .......... ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] autotuning_config ... ......... {"enabled": false,"start_step": null,"end_step": null,"metric_path": null,"arg_mappings": null,"metric": "throughput","model_info": null,"results_dir": "autotuning_results","exps_dir": "autotuning_exps","overwrite": true,"fast": true,"start_profile_step": 3,"end_profile_step": 5,"tuner_type": "gridsearch","tuner_early_stopping": 5,"tuner_num_trials": 50,"model_info_path": null,"mp_size": 1,"max_train_batch_size": null,"min_train_batch_size": 1,"max_train_micro_batch_size_per_gpu": 1.024000e+03,"min_train_micro_batch_size_per_gpu": 1,"num_tuning_micro_batch_sizes": 3
}
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] bfloat16_enabled .... ......... True
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] bfloat16_immediate_gr ad_update False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] checkpoint_parallel_w rite_pipeline False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] checkpoint_tag_valida tion_enabled True
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] checkpoint_tag_valida tion_fail False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] comms_config ........ ......... <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7fe2dfd767d0>
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] communication_data_ty pe ...... None
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] compile_config ...... ......... enabled=False backend='inductor' kwargs={}
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] compression_config .. ......... {'weight_quantization': {'shared_parameters': {'enabled': False, 'qua ntizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_ve rbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ra tio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_para meters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibratio n': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruni ng': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset' : 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enable d': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, ' head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'sche dule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_param eters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different _groups': {}}, 'layer_reduction': {'enabled': False}}
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] curriculum_enabled_le gacy .... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] curriculum_params_leg acy ..... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] data_efficiency_confi g ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False} }, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_t oken_lr_schedule': {'enabled': False}}}}
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] data_efficiency_enabl ed ...... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] dataloader_drop_last ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] disable_allgather ... ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] dump_state .......... ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] dynamic_loss_scale_ar gs ...... None
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] eigenvalue_enabled .. ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] eigenvalue_gas_bounda ry_resolution 1
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] eigenvalue_layer_name ........ bert.encoder.layer
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] eigenvalue_layer_num ......... 0
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] eigenvalue_max_iter . ......... 100
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] eigenvalue_stability ......... 1e-06
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] eigenvalue_tol ...... ......... 0.01
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] eigenvalue_verbose .. ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] elasticity_enabled .. ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] flops_profiler_config ........ {"enabled": false,"recompute_fwd_factor": 0.0,"profile_step": 1,"module_depth": -1,"top_modules": 1,"detailed": true,"output_file": null
}
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] fp16_auto_cast ...... ......... None
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] fp16_enabled ........ ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] fp16_master_weights_a nd_gradients False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] global_rank ......... ......... 0
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] grad_accum_dtype .... ......... None
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] gradient_accumulation _steps .. 16
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] gradient_clipping ... ......... 1
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] gradient_predivide_fa ctor .... 1.0
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] graph_harvesting .... ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] hybrid_engine ....... ......... enabled=False max_out_tokens=512 inference_tp_size=1 release_inferenc e_cache=False pin_parameters=True tp_gather_partition_size=8
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] initial_dynamic_scale ........ 1
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] load_universal_checkp oint .... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] loss_scale .......... ......... 1.0
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] memory_breakdown .... ......... False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] mics_hierarchial_para ms_gather False
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] mics_shard_size ..... ......... -1
[2024-04-12 20:34:43,435] [INFO] [config.py:1000:print] monitor_config ...... ......... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name ='DeepSpeedJobName') wandb=WandbConfig(enabled=False, group=None, team=None, pr oject='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_nam e='DeepSpeedJobName') enabled=False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] nebula_config ....... ......... {"enabled": false,"persistent_storage_path": null,"persistent_time_interval": 100,"num_of_version_in_retention": 2,"enable_nebula_load": true,"load_path": null
}
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] optimizer_legacy_fusi on ...... False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] optimizer_name ...... ......... None
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] optimizer_params .... ......... None
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] pipeline ............ ......... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activa tion_checkpoint_interval': 0, 'pipe_partitioned': True, 'grad_partitioned': Tru e}
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] pld_enabled ......... ......... False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] pld_params .......... ......... False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] prescale_gradients .. ......... False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] scheduler_name ...... ......... None
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] scheduler_params .... ......... None
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] seq_parallel_communic ation_data_type torch.float32
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] sparse_attention .... ......... None
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] sparse_gradients_enab led ..... False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] steps_per_print ..... ......... 10000000000000
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] train_batch_size .... ......... 16
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] train_micro_batch_siz e_per_gpu 1
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] use_data_before_exper t_parallel_ False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] use_node_local_storag e ....... False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] wall_clock_breakdown ......... False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] weight_quantization_c onfig ... None
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] world_size .......... ......... 1
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] zero_allow_untested_o ptimizer True
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] zero_config ......... ......... stage=2 contiguous_gradients=True reduce_scatter=True reduce_bucket_s ize=500,000,000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500,000,000 overlap_comm=True load_from_fp32_weights=True elastic_checkpoint=False offload_param=None offload_optimizer=None sub_group_s ize=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_of fload=None prefetch_bucket_size=50,000,000 param_persistence_threshold=100,000 model_persistence_threshold=sys.maxsize max_live_parameters=1,000,000,000 max_r euse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gat her_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage 1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_we ights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients= False mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient _linear=True pipeline_loading_checkpoint=False override_module_apply=True
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] zero_enabled ........ ......... True
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] zero_force_ds_cpu_opt imizer .. False
[2024-04-12 20:34:43,436] [INFO] [config.py:1000:print] zero_optimization_sta ge ...... 2
[2024-04-12 20:34:43,436] [INFO] [config.py:986:print_user_config] json = {"gradient_accumulation_steps": 16,"train_micro_batch_size_per_gpu": 1,"gradient_clipping": 1,"zero_allow_untested_optimizer": true,"zero_force_ds_cpu_optimizer": false,"zero_optimization": {"stage": 2,"overlap_comm": true},"fp16": {"enabled": false,"initial_scale_power": 16},"bf16": {"enabled": true},"steps_per_print": 1.000000e+13
}
04/12 20:34:43 - mmengine - INFO - Num train samples 384
04/12 20:34:43 - mmengine - INFO - train example:
04/12 20:34:43 - mmengine - INFO - <s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
<s><|User|>:请做一下自我介绍
<|Bot|>:我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
04/12 20:34:43 - mmengine - INFO - before_train in EvaluateChatHook.
04/12 21:24:47 - mmengine - INFO - Iter(train) [300/768] lr: 1.3958e-04 eta: 0:18:57 time: 2.2819 data_time: 0.0076 memory: 5661 loss: 0.0212
04/12 21:24:47 - mmengine - INFO - after_train_iter in EvaluateChatHook.
04/12 21:24:48 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:请你介绍一下你自己
<|Bot|>:我是段老师的小助手哦</s>04/12 21:24:49 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:你是谁
<|Bot|>:我是段老师的小助手</s>04/12 21:24:49 - mmengine - INFO - Sample output:
<s><|System|>:Below is an instruction that describes a task. Write a response t hat appropriately completes the request.<|User|>:你是我的小助手吗
<|Bot|>:我是段老师的小助手哦</s>
可以看到,通过 deepspeed 来训练后得到的权重文件和原本的权重文件是有所差别的,原本的仅仅是一个 .pth 的文件,而使用了 deepspeed 则是一个名字带有 .pth 的文件夹,在该文件夹里保存了两个 .pt 文件。当然这两者在具体的使用上并没有太大的差别,都是可以进行转化并整合。
训练结果
但是其实无论是用哪种方式进行训练,得到的结果都是大差不差的。由于设置了300轮评估一次,所以可以对比一下300轮和600轮的评估问题结果来看看差别。以剑锋大佬的日志为例
# 300轮<|User|>:请你介绍一下你自己
<|Bot|>:我是剑锋大佬的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s><|User|>:你是谁
<|Bot|>:我是剑锋大佬的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s><|User|>:你是我的小助手吗
<|Bot|>:是的</s># 600轮<|User|>:请你介绍一下你自己
<|Bot|>:我是剑锋大佬的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s><|User|>:你是谁
<|Bot|>:我是剑锋大佬的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s><|User|>:你是我的小助手吗
<|Bot|>:我是剑锋大佬的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>
通过对比两者的表现,可以清晰地发现,在训练至300轮时,模型已能准确应对诸如“你是谁”或“请你介绍一下你自己”的提问,其回应为:“我是剑锋大佬的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦”。然而,在面对问题“你是我的小助手”时,尽管在300轮时模型给出了正确答案“是”,但在600轮时,其回复仍为上述完整介绍语句。此现象揭示了在第一批训练的第600轮,模型出现了显著的过拟合问题,丧失了基本应变能力,转而机械重复同一句话。自此之后,无论输入何种问题,模型仅能提供相同的答复,无法进行其他内容的回答。基于通用能力的考量,选择更早的权重文件进行后续模型转化与整合工作或许更为适宜。
针对上述问题,可采取以下两种策略进行解决:
-
缩短保存权重文件的间隔并提升保存上限:该方法旨在通过减小间隔并结合评估结果,精准定位模型既能掌握特定知识又保持基本常识的时刻,以及开始严重过拟合、仅复述固定语句的时间点。具体操作时,可考虑每间隔100个批次检查模型状态。鉴于配置文件中对权重文件保存数量存在上限限制,同步提高此上限是实施该方案的必要条件。
-
增补常规对话数据集以降低原始数据比重:此方法旨在在利用对话数据集进行指令微调的过程中,融入额外数据集,使模型在掌握常规对话能力的同时,具备对特定问题的特异化处理能力。例如,可在一万条普通对话数据中混入两千条与小助手相关的数据,如此一来,模型在保持对话能力的基础上,也能学会针对“剑锋大佬的小助手”这一特定表述的恰当回应。此种处理方式在实践中颇为常见,建议读者自行尝试应用。
模型续训指南
假如我们的模型训练过程中突然被中断了,我们也可以通过在原有指令的基础上加上 --resume {checkpoint_path} 来实现模型的继续训练。需要注意的是,这个继续训练得到的权重文件和中断前的完全一致,并不会有任何区别。下面我将用训练了500轮的例子来进行演示。
# 模型续训
(xtuner0.1.17) root@intern-studio-061925:~/ft/train# xtuner train /root/ft/config/internlm2_1_8b_qlora_alpaca_e3_copy.py --work-dir /root/ft/train --resume /root/ft/train/iter_500.pth
(xtuner0.1.17) root@intern-studio-061925:~/ft/train# # 模型续训
(xtuner0.1.17) root@intern-studio-061925:~/ft/train# xtuner train /root/ft/config/internlm2_1_8b_qlora_alpaca_e3_copy.py --work-dir /root/ft/train --resume /root/ft/train/iter_500.pth
[2024-04-12 21:53:37,797] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-04-12 21:54:31,954] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
04/12 21:54:54 - mmengine - INFO - Set the random seed to 381669460.
04/12 21:54:59 - mmengine - INFO -
------------------------------------------------------------
System environment:sys.platform: linuxPython: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]CUDA available: TrueMUSA available: Falsenumpy_random_seed: 381669460GPU 0: NVIDIA A100-SXM4-80GBCUDA_HOME: /usr/local/cudaNVCC: Cuda compilation tools, release 11.7, V11.7.99GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0PyTorch: 2.0.1PyTorch compiling details: PyTorch built with:- GCC 9.3- C++ Version: 201703- Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)- OpenMP 201511 (a.k.a. OpenMP 4.5)- LAPACK is enabled (usually provided by MKL)- NNPACK is enabled- CPU capability usage: AVX2- CUDA Runtime 11.7- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37- CuDNN 8.5- Magma 2.6.1- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,TorchVision: 0.15.2OpenCV: 4.9.0MMEngine: 0.10.3Runtime environment:cudnn_benchmark: Falsemp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}dist_cfg: {'backend': 'nccl'}seed: 381669460deterministic: FalseDistributed launcher: noneDistributed training: FalseGPU number: 1
------------------------------------------------------------04/12 21:55:00 - mmengine - INFO - Config:
SYSTEM = 'xtuner.utils.SYSTEM_TEMPLATE.alpaca'
accumulative_counts = 16
alpaca_en = dict(dataset=dict(data_files=dict(train='/root/ft/data/personal_assistant.json'),path='json',type='datasets.load_dataset'),dataset_map_fn='xtuner.dataset.map_fns.openai_map_fn',max_length=1024,pack_to_max_length=True,remove_unused_columns=True,shuffle_before_pack=True,template_map_fn=dict(template='xtuner.utils.PROMPT_TEMPLATE.default',type='xtuner.dataset.map_fns.template_map_fn_factory'),tokenizer=dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained'),type='xtuner.dataset.process_hf_dataset',use_varlen_attn=False)
alpaca_en_path = '/root/ft/data/personal_assistant.json'
batch_size = 1
betas = (0.9,0.999,
)
custom_hooks = [dict(tokenizer=dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained'),type='xtuner.engine.hooks.DatasetInfoHook'),dict(evaluation_inputs=['请你介绍一下你自己','你是谁','你是我的小助手吗',],every_n_iters=300,prompt_template='xtuner.utils.PROMPT_TEMPLATE.default',system='xtuner.utils.SYSTEM_TEMPLATE.alpaca',tokenizer=dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained'),type='xtuner.engine.hooks.EvaluateChatHook'),
]
dataloader_num_workers = 0
default_hooks = dict(checkpoint=dict(by_epoch=False,interval=500,max_keep_ckpts=3,type='mmengine.hooks.CheckpointHook'),logger=dict(interval=10,log_metric_by_epoch=False,type='mmengine.hooks.LoggerHook'),param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(cudnn_benchmark=False,dist_cfg=dict(backend='nccl'),mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
evaluation_freq = 300
evaluation_inputs = ['请你介绍一下你自己','你是谁','你是我的小助手吗',
]
launcher = 'none'
load_from = '/root/ft/train/iter_500.pth'
log_level = 'INFO'
log_processor = dict(by_epoch=False)
lr = 0.0002
max_epochs = 2
max_length = 1024
max_norm = 1
model = dict(llm=dict(pretrained_model_name_or_path='/root/ft/model',quantization_config=dict(bnb_4bit_compute_dtype='torch.float16',bnb_4bit_quant_type='nf4',bnb_4bit_use_double_quant=True,llm_int8_has_fp16_weight=False,llm_int8_threshold=6.0,load_in_4bit=True,load_in_8bit=False,type='transformers.BitsAndBytesConfig'),torch_dtype='torch.float16',trust_remote_code=True,type='transformers.AutoModelForCausalLM.from_pretrained'),lora=dict(bias='none',lora_alpha=16,lora_dropout=0.1,r=64,task_type='CAUSAL_LM',type='peft.LoraConfig'),type='xtuner.model.SupervisedFinetune',use_varlen_attn=False)
optim_type = 'torch.optim.AdamW'
optim_wrapper = dict(accumulative_counts=16,clip_grad=dict(error_if_nonfinite=False, max_norm=1),dtype='float16',loss_scale='dynamic',optimizer=dict(betas=(0.9,0.999,),lr=0.0002,type='torch.optim.AdamW',weight_decay=0),type='mmengine.optim.AmpOptimWrapper')
pack_to_max_length = True
param_scheduler = [dict(begin=0,by_epoch=True,convert_to_iter_based=True,end=0.06,start_factor=1e-05,type='mmengine.optim.LinearLR'),dict(begin=0.06,by_epoch=True,convert_to_iter_based=True,end=2,eta_min=0.0,type='mmengine.optim.CosineAnnealingLR'),
]
pretrained_model_name_or_path = '/root/ft/model'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.default'
randomness = dict(deterministic=False, seed=381669460)
resume = True
sampler = 'mmengine.dataset.DefaultSampler'
save_steps = 500
save_total_limit = 3
sequence_parallel_size = 1
tokenizer = dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(max_epochs=2, type='xtuner.engine.runner.TrainLoop')
train_dataloader = dict(batch_size=1,collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn',use_varlen_attn=False),dataset=dict(dataset=dict(data_files=dict(train='/root/ft/data/personal_assistant.json'),path='json',type='datasets.load_dataset'),dataset_map_fn='xtuner.dataset.map_fns.openai_map_fn',max_length=1024,pack_to_max_length=True,remove_unused_columns=True,shuffle_before_pack=True,template_map_fn=dict(template='xtuner.utils.PROMPT_TEMPLATE.default',type='xtuner.dataset.map_fns.template_map_fn_factory'),tokenizer=dict(padding_side='right',pretrained_model_name_or_path='/root/ft/model',trust_remote_code=True,type='transformers.AutoTokenizer.from_pretrained'),type='xtuner.dataset.process_hf_dataset',use_varlen_attn=False),num_workers=0,sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
use_varlen_attn = False
visualizer = None
warmup_ratio = 0.03
weight_decay = 0
work_dir = '/root/ft/train'quantization_config convert to <class 'transformers.utils.quantization_config.BitsAndBytesConfig'>
04/12 21:55:00 - mmengine - WARNING - Failed to search registry with scope "mmengine" in the "builder" registry tree. As a workaround, the current "builder" registry in "xtuner" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmengine" is a correct scope, or whether the registry is initialized.
`low_cpu_mem_usage` was None, now set to True since model is quantized.
模型转换、整合、测试及部署
模型转换
模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 Huggingface 格式文件,那么我们可以通过以下指令来实现一键转换。
# 创建一个保存转换后 Huggingface 格式的文件夹
mkdir -p /root/ft/huggingface# 模型转换
# xtuner convert pth_to_hf ${配置文件地址} ${权重文件地址} ${转换后模型保存地址}
xtuner convert pth_to_hf /root/ft/train/internlm2_1_8b_qlora_alpaca_e3_copy.py /root/ft/train/iter_768.pth /root/ft/huggingface
(xtuner0.1.17) root@intern-studio-061925:~/ft/train# # 创建一个保存转换后 Huggingface 格式的文件夹
(xtuner0.1.17) root@intern-studio-061925:~/ft/train# mkdir -p /root/ft/huggingface
(xtuner0.1.17) root@intern-studio-061925:~/ft/train#
(xtuner0.1.17) root@intern-studio-061925:~/ft/train# # 模型转换
} ${转换后模型保存地址}ern-studio-061925:~/ft/train# # xtuner convert pth_to_hf ${配置文件地址} ${权重文件地址}
(xtuner0.1.17) root@intern-studio-061925:~/ft/train# xtuner convert pth_to_hf /root/ft/train/internlm2_1_8b_qlora_alpaca_e3_copy.py /root/ft/train/iter_768.pth /root/ft/huggingface
[2024-04-12 22:15:00,453] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-04-12 22:15:40,075] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
quantization_config convert to <class 'transformers.utils.quantization_config.BitsAndBytesConfig'>
`low_cpu_mem_usage` was None, now set to True since model is quantized.
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████| 2/2 [01:30<00:00, 45.30s/it]
04/12 22:17:44 - mmengine - WARNING - Due to the implementation of the PyTorch version of flash attention, even when the `output_attentions` flag is set to True, it is not possible to return the `attn_weights`.
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - dispatch internlm2 attn forward
04/12 22:17:44 - mmengine - INFO - replace internlm2 rope
04/12 22:17:45 - mmengine - INFO - replace internlm2 rope
04/12 22:17:45 - mmengine - INFO - replace internlm2 rope
04/12 22:17:45 - mmengine - INFO - replace internlm2 rope
04/12 22:17:46 - mmengine - INFO - replace internlm2 rope
04/12 22:17:46 - mmengine - INFO - replace internlm2 rope
04/12 22:17:47 - mmengine - INFO - replace internlm2 rope
04/12 22:17:48 - mmengine - INFO - replace internlm2 rope
04/12 22:17:48 - mmengine - INFO - replace internlm2 rope
04/12 22:17:49 - mmengine - INFO - replace internlm2 rope
04/12 22:17:50 - mmengine - INFO - replace internlm2 rope
04/12 22:17:50 - mmengine - INFO - replace internlm2 rope
04/12 22:17:51 - mmengine - INFO - replace internlm2 rope
04/12 22:17:51 - mmengine - INFO - replace internlm2 rope
04/12 22:17:52 - mmengine - INFO - replace internlm2 rope
04/12 22:17:53 - mmengine - INFO - replace internlm2 rope
04/12 22:17:53 - mmengine - INFO - replace internlm2 rope
04/12 22:17:54 - mmengine - INFO - replace internlm2 rope
04/12 22:17:55 - mmengine - INFO - replace internlm2 rope
04/12 22:17:55 - mmengine - INFO - replace internlm2 rope
04/12 22:17:56 - mmengine - INFO - replace internlm2 rope
04/12 22:17:56 - mmengine - INFO - replace internlm2 rope
04/12 22:17:57 - mmengine - INFO - replace internlm2 rope
04/12 22:17:58 - mmengine - INFO - replace internlm2 rope
Load PTH model from /root/ft/train/iter_768.pth
Saving adapter to /root/ft/huggingface
Convert LLM to float16
/root/.conda/envs/xtuner0.1.17/lib/python3.10/site-packages/peft/utils/save_and_load.py:154: UserWarning: Could not find a config file in /root/ft/model - will assume that the vocabulary was not modified.warnings.warn(
All done!
转换完成后,可以看到模型被转换为 Huggingface 中常用的 .bin 格式文件,这就代表着文件成功被转化为 Huggingface 格式了。
huggingface 文件夹即为我们平时所理解的所谓 “LoRA 模型文件”
可以简单理解:LoRA 模型文件 = Adapter
除此之外,我们其实还可以在转换的指令中添加几个额外的参数,包括以下两个:
参数名 解释
–fp32 代表以fp32的精度开启,假如不输入则默认为fp16
–max-shard-size {GB} 代表每个权重文件最大的大小(默认为2GB)
模型整合
对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(adapter)。那么训练完的这个层最终还是要与原模型进行组合才能被正常的使用。
而对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 adapter ,因此是不需要进行模型整合的。
在 XTuner 中也是提供了一键整合的指令,但是在使用前我们需要准备好三个地址,包括原模型的地址、训练好的 adapter 层的地址(转为 Huggingface 格式后保存的部分)以及最终保存的地址
# 创建一个名为 final_model 的文件夹存储整合后的模型文件
mkdir -p /root/ft/final_model# 解决一下线程冲突的 Bug
export MKL_SERVICE_FORCE_INTEL=1# 进行模型整合
# xtuner convert merge ${NAME_OR_PATH_TO_LLM} ${NAME_OR_PATH_TO_ADAPTER} ${SAVE_PATH}
xtuner convert merge /root/ft/model /root/ft/huggingface /root/ft/final_model
在模型整合这一步还是其他很多的可选参数,包括:
整合完成后可以查看在 final_model 文件夹下的内容
对话测试
在 XTuner 中也直接的提供了一套基于 transformers 的对话代码,让我们可以直接在终端与 Huggingface 格式的模型进行对话操作。
# 与模型进行对话
xtuner chat /root/ft/final_model --prompt-template internlm2_chat
可以通过一些简单的测试来看看微调后的模型的能力。
假如我们想要输入内容需要在输入文字后敲击两下回车,假如清理历史记录需要输入 RESET,假如要退出则需要输入 EXIT
(xtuner0.1.17) root@intern-studio-061925:~/ft/final_model# # 与模型进行对话
(xtuner0.1.17) root@intern-studio-061925:~/ft/final_model# xtuner chat /root/ft/final_model --prompt-template internlm2_chat
[2024-04-12 22:28:10,796] [INFO] [real_accelerator.py:191:get_accele rator] Setting ds_accelerator to cuda (auto detect)
Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is inco mpatible with libgomp.so.1 library.Try to import numpy first or set the threading layer accordi ngly. Set MKL_SERVICE_FORCE_INTEL to force it.
[2024-04-12 22:28:40,273] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]/root/.conda/envs/xtuner0.1.17/lib/python3.10/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()return self.fget.__get__(instance, owner)()
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████| 2/2 [00:05<00:00, 2.78s/it]
Load LLM from /root/ft/final_modeldouble enter to end input (EXIT: exit chat, RESET: reset history) >>> 你是谁我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>double enter to end input (EXIT: exit chat, RESET: reset history) >>> 我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>double enter to end input (EXIT: exit chat, RESET: reset history) >>> 请你介绍一下你自己我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>double enter to end input (EXIT: exit chat, RESET: reset history) >>> 你是我的小助手吗我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦</s>double enter to end input (EXIT: exit chat, RESET: reset history) >>>
可以看到模型已经严重过拟合,回复的话就只有 “我是段老师的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦” 这句话。我们下面可以通过对比原模型的能力来看看差异。
(xtuner0.1.17) root@intern-studio-061925:~/ft/final_model# # 同样的我们也可以和原模型进行对话进行对比
(xtuner0.1.17) root@intern-studio-061925:~/ft/final_model# xtuner chat /root/ft/model --prompt-template internlm2_chat
[2024-04-12 22:32:55,255] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library.Try to import numpy first or set the threading layer accordingly. Set MKL_SERVICE_FORCE_INTEL to force it.
[2024-04-12 22:33:48,261] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████| 2/2 [00:46<00:00, 23.48s/it]
Load LLM from /root/ft/modeldouble enter to end input (EXIT: exit chat, RESET: reset history) >>> 你是谁我是一个人工智能助手,由上海人工智能实验室开发。我致力于通过执行常见的基于语言的任务和提供建议来帮助人类。我使用了Transformer模型和深度学习技术,并使用语言模型作为预训练任务。我能够回答问题、提供定义和解释、将文本从一种语言翻译成另一种语言、总结文本、生成文本、编写故事、分析情感、提供推荐、开发算法、编写代码以及其他任何基于语言的任务。但是,我不能看、听、尝、触摸、闻、移动、与物理世界交互、感受情感或体验感官输入、执行需要身体能力的任务。<|im_end|>double enter to end input (EXIT: exit chat, RESET: reset history) >>> 非常感谢您的提问。作为一个AI助手,我致力于为您提供帮助和支持。如果您有其他问题或需要帮助,请随时告诉我,我会尽力为您提供帮助。<|im_end|>double enter to end input (EXIT: exit chat, RESET: reset history) >>> 请你介绍一下你自己我是一个人工智能助手,由上海人工智能实验室开发。我使用了Transformer模型和深度学习技术,并使用语言模型作为预训练任务。我能够回答问题、提供定义和解释、将文本从一种语言翻译成另一种语言、总结文本、生成文本、编写故事、分析情感、提供推荐、开发算法、编写代码以及其他任何基于语言的任务。但是,我不能看、听、尝、触摸、闻、移动、与物理世界交互、感受情感或体验感官输入、执行需要身体能力的任务。<|im_end|>double enter to end input (EXIT: exit chat, RESET: reset history) >>> 你是我的小助手吗是的,我是一款人工智能助手,旨在帮助人类完成各种基于语言的任务。我使用了Transformer模型和深度学习技术,并使用语言模型作为预训练任务。我能够回答问题、提供定义和解释、将文本从一种语言翻译成另一种语言、总结文本、生成文本、编写故事、分析情感、提供推荐、开发算法、编写代码以及其他任何基于语言的任务。但是,我不能看、听、尝、触摸、闻、移动、与物理世界交互、感受情感或体验感官输入、执行需要身体能力的任务。<|im_end|>double enter to end input (EXIT: exit chat, RESET: reset history) >>>```![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/810bb7fd9f39465d811cc07d37f88694.png)
可以看到在没有进行我们数据的微调前,原模型是能够输出有逻辑的回复,并且也不会认为他是我们特有的小助手。因此我们可以很明显的看出两者之间的差异性。那对于 xtuner chat 这个指令而言,还有很多其他的参数可以进行设置的,
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/926c80ef3f0341afa721bbe97d87fdaa.png)
还有一个非常重要的参数就是 --adapter ,这个参数主要的作用就是可以在转化后的 adapter 层与原模型整合之前来对该层进行测试。使用这个额外的参数对话的模型和整合后的模型几乎没有什么太多的区别,因此我们可以通过测试不同的权重文件生成的 adapter 来找到最优的 adapter 进行最终的模型整合工作。```python
# 使用 --adapter 参数与完整的模型进行对话
xtuner chat /root/ft/model --adapter /root/ft/huggingface --prompt-template internlm2_chat
Web demo 部署
还可以在网页端的 demo 进行对话。
那首先我们需要先下载网页端 web demo 所需要的依赖。
pip install streamlit==1.24.0
下载 InternLM 项目代码
# 创建存放 InternLM 文件的代码
mkdir -p /root/ft/web_demo && cd /root/ft/web_demo# 拉取 InternLM 源文件
git clone https://github.com/InternLM/InternLM.git# 进入该库中
cd /root/ft/web_demo/InternLM
将 /root/ft/web_demo/InternLM/chat/web_demo.py 中的内容替换为以下的代码
"""This script refers to the dialogue example of streamlit, the interactive
generation code of chatglm2 and transformers.We mainly modified part of the code logic to adapt to the
generation of our model.
Please refer to these links below for more information:1. streamlit chat example:https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps2. chatglm2:https://github.com/THUDM/ChatGLM2-6B3. transformers:https://github.com/huggingface/transformers
Please run with the command `streamlit run path/to/web_demo.py--server.address=0.0.0.0 --server.port 7860`.
Using `python path/to/web_demo.py` may cause unknown problems.
"""
# isort: skip_file
import copy
import warnings
from dataclasses import asdict, dataclass
from typing import Callable, List, Optionalimport streamlit as st
import torch
from torch import nn
from transformers.generation.utils import (LogitsProcessorList,StoppingCriteriaList)
from transformers.utils import loggingfrom transformers import AutoTokenizer, AutoModelForCausalLM # isort: skiplogger = logging.get_logger(__name__)@dataclass
class GenerationConfig:# this config is used for chat to provide more diversitymax_length: int = 2048top_p: float = 0.75temperature: float = 0.1do_sample: bool = Truerepetition_penalty: float = 1.000@torch.inference_mode()
def generate_interactive(model,tokenizer,prompt,generation_config: Optional[GenerationConfig] = None,logits_processor: Optional[LogitsProcessorList] = None,stopping_criteria: Optional[StoppingCriteriaList] = None,prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor],List[int]]] = None,additional_eos_token_id: Optional[int] = None,**kwargs,
):inputs = tokenizer([prompt], padding=True, return_tensors='pt')input_length = len(inputs['input_ids'][0])for k, v in inputs.items():inputs[k] = v.cuda()input_ids = inputs['input_ids']_, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]if generation_config is None:generation_config = model.generation_configgeneration_config = copy.deepcopy(generation_config)model_kwargs = generation_config.update(**kwargs)bos_token_id, eos_token_id = ( # noqa: F841 # pylint: disable=W0612generation_config.bos_token_id,generation_config.eos_token_id,)if isinstance(eos_token_id, int):eos_token_id = [eos_token_id]if additional_eos_token_id is not None:eos_token_id.append(additional_eos_token_id)has_default_max_length = kwargs.get('max_length') is None and generation_config.max_length is not Noneif has_default_max_length and generation_config.max_new_tokens is None:warnings.warn(f"Using 'max_length''s default ({repr(generation_config.max_length)}) \to control the generation length. "'This behaviour is deprecated and will be removed from the \config in v5 of Transformers -- we'' recommend using `max_new_tokens` to control the maximum \length of the generation.',UserWarning,)elif generation_config.max_new_tokens is not None:generation_config.max_length = generation_config.max_new_tokens + \input_ids_seq_lengthif not has_default_max_length:logger.warn( # pylint: disable=W4902f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "f"and 'max_length'(={generation_config.max_length}) seem to ""have been set. 'max_new_tokens' will take precedence. "'Please refer to the documentation for more information. ''(https://huggingface.co/docs/transformers/main/''en/main_classes/text_generation)',UserWarning,)if input_ids_seq_length >= generation_config.max_length:input_ids_string = 'input_ids'logger.warning(f"Input length of {input_ids_string} is {input_ids_seq_length}, "f"but 'max_length' is set to {generation_config.max_length}. "'This can lead to unexpected behavior. You should consider'" increasing 'max_new_tokens'.")# 2. Set generation parameters if not already definedlogits_processor = logits_processor if logits_processor is not None \else LogitsProcessorList()stopping_criteria = stopping_criteria if stopping_criteria is not None \else StoppingCriteriaList()logits_processor = model._get_logits_processor(generation_config=generation_config,input_ids_seq_length=input_ids_seq_length,encoder_input_ids=input_ids,prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,logits_processor=logits_processor,)stopping_criteria = model._get_stopping_criteria(generation_config=generation_config,stopping_criteria=stopping_criteria)logits_warper = model._get_logits_warper(generation_config)unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)scores = Nonewhile True:model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)# forward pass to get next tokenoutputs = model(**model_inputs,return_dict=True,output_attentions=False,output_hidden_states=False,)next_token_logits = outputs.logits[:, -1, :]# pre-process distributionnext_token_scores = logits_processor(input_ids, next_token_logits)next_token_scores = logits_warper(input_ids, next_token_scores)# sampleprobs = nn.functional.softmax(next_token_scores, dim=-1)if generation_config.do_sample:next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)else:next_tokens = torch.argmax(probs, dim=-1)# update generated ids, model inputs, and length for next stepinput_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)model_kwargs = model._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())output_token_ids = input_ids[0].cpu().tolist()output_token_ids = output_token_ids[input_length:]for each_eos_token_id in eos_token_id:if output_token_ids[-1] == each_eos_token_id:output_token_ids = output_token_ids[:-1]response = tokenizer.decode(output_token_ids)yield response# stop when each sentence is finished# or if we exceed the maximum lengthif unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):breakdef on_btn_click():del st.session_state.messages@st.cache_resource
def load_model():model = (AutoModelForCausalLM.from_pretrained('/root/ft/final_model',trust_remote_code=True).to(torch.bfloat16).cuda())tokenizer = AutoTokenizer.from_pretrained('/root/ft/final_model',trust_remote_code=True)return model, tokenizerdef prepare_generation_config():with st.sidebar:max_length = st.slider('Max Length',min_value=8,max_value=32768,value=2048)top_p = st.slider('Top P', 0.0, 1.0, 0.75, step=0.01)temperature = st.slider('Temperature', 0.0, 1.0, 0.1, step=0.01)st.button('Clear Chat History', on_click=on_btn_click)generation_config = GenerationConfig(max_length=max_length,top_p=top_p,temperature=temperature)return generation_configuser_prompt = '<|im_start|>user\n{user}<|im_end|>\n'
robot_prompt = '<|im_start|>assistant\n{robot}<|im_end|>\n'
cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\<|im_start|>assistant\n'def combine_history(prompt):messages = st.session_state.messagesmeta_instruction = ('')total_prompt = f"<s><|im_start|>system\n{meta_instruction}<|im_end|>\n"for message in messages:cur_content = message['content']if message['role'] == 'user':cur_prompt = user_prompt.format(user=cur_content)elif message['role'] == 'robot':cur_prompt = robot_prompt.format(robot=cur_content)else:raise RuntimeErrortotal_prompt += cur_prompttotal_prompt = total_prompt + cur_query_prompt.format(user=prompt)return total_promptdef main():# torch.cuda.empty_cache()print('load model begin.')model, tokenizer = load_model()print('load model end.')st.title('InternLM2-Chat-1.8B')generation_config = prepare_generation_config()# Initialize chat historyif 'messages' not in st.session_state:st.session_state.messages = []# Display chat messages from history on app rerunfor message in st.session_state.messages:with st.chat_message(message['role'], avatar=message.get('avatar')):st.markdown(message['content'])# Accept user inputif prompt := st.chat_input('What is up?'):# Display user message in chat message containerwith st.chat_message('user'):st.markdown(prompt)real_prompt = combine_history(prompt)# Add user message to chat historyst.session_state.messages.append({'role': 'user','content': prompt,})with st.chat_message('robot'):message_placeholder = st.empty()for cur_response in generate_interactive(model=model,tokenizer=tokenizer,prompt=real_prompt,additional_eos_token_id=92542,**asdict(generation_config),):# Display robot response in chat message containermessage_placeholder.markdown(cur_response + '▌')message_placeholder.markdown(cur_response)# Add robot response to chat historyst.session_state.messages.append({'role': 'robot','content': cur_response, # pylint: disable=undefined-loop-variable})torch.cuda.empty_cache()if __name__ == '__main__':main()
在运行前,我们还需要做的就是将端口映射到本地
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 42922
输入以下命令运行 /root/personal_assistant/code/InternLM 目录下的 web_demo.py 文件
streamlit run /root/ft/web_demo/InternLM/chat/web_demo.py --server.address 127.0.0.1 --server.port 6006
在本节中主要就是带领着大家跑通了 XTuner 的一个完整流程,通过了解数据集和模型的使用方法、配置文件的制作和训练以及 转换及整合。
https://github.com/InternLM/Tutorial/blob/camp2/xtuner/personal_assistant_document.md