【数据分析】AHP层次分析法

博主总结:根据每个方案x各准则因素权重累加结果   对比来选择目标。数据主观性强

简介

AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

比如现在想选择一个最佳旅游景点,当前有三个选择标准(分别是景色,门票和交通),并且对应有三种选择方案。现通过旅游专家打分,希望结合三个选择标准,选出最佳方案(即最终决定去哪个景区旅游)。诸如此类问题即专家打分进行权重计算等,均可通过AHP层次分析法得到解决。

正如上述问题,专家可以对3个准则层标准(分别是景色,门票和交通)进行打分,得到3个选择标准对应的权重值;然后结合准则层得到的权重值,加上方案层的得分,最终选择出最佳方案。

  • 特别提示
  • 对于AHP层次分析法,即专家打分进行权重,专家打分需要遵循特殊的数据格式,即“判断矩阵”;
  • AHP层次分析法包括两个步骤,分别是权重计算和一致性检验(SPSSAU会默认输出);
  • SPSSAU需要手工输入判断矩阵数据即可完成分析,不需要上传。

分析结果表格示例如下:

AHP层次分析案例

1、背景

当前公司希望组织员工出去旅游,希望综合满足大家的要求,因此找到10位旅游专家,对旅游的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),最终得出四个影响因素的权重,然后结合权重值,对3个备选景点计算得分,选择出最佳旅游方案。

总共有4个评价因素(即准则层为4项,分别是景色,门票,交通和拥挤度),共有10位旅游专家进行打分,采用1-5分标度法,即比如A因素相对B因素非常重要,此时打5分,那么B因素相对于A因素就是1/5即0.2分。A因素相对B因素比较重要,此时打3分;A因素相对B因素重要程度一样,此时为1分。

共有10个旅游专家打分,最终将10个旅游的打分进行计算平均分,得到最终的判断矩阵表格,如下表:

上表格显示:门票相对于景色来讲,重要性更高,所以为3分;相反,景色相对于门票来讲,则为0.33333分。交通相对于景色来更重要为2分,以及拥挤度相对于景色来讲更重要为2分。其余类似下去。

2、理论

完整的AHP层次分析法通常包括四个步骤,分别是:

  • 第一步:标度确定和构造判断矩阵;
  • 此步骤即为原始数据(判断矩阵)的来源,比如本例中使用1-5分标度法(最低为1分,最高为5分);并且结合出专家打分最终得到判断矩阵表格。
  • 第二步:特征向量,特征根计算和权重计算;
  • 此步骤目的在于计算出权重值,如果需要计算权重,则需要首先计算特征向量值,因此SPSSAU会提供特征向量指标。 同时得到最大特征根值(CI),用于下一步的一致性检验使用。
  • 第三步:一致性检验分析;
  • 在构建判断矩阵时,有可能会出现逻辑性错误,比如A比B重要,B比C重要,但却又出现C比A重要。因此需要使用一致性检验是否出现问题,一致性检验使用CR值进行分析,CR值小于0.1则说明通过一致性检验,反之则说明没有通过一致性检验。
    针对CR的计算上,CR=CI/RI,CI值在求特征向量时已经得到,RI值则直接查表得出。
    如果数据没有通过一致性检验,此时需要检查是否存在逻辑问题等,重新录入判断矩阵进行分析。
  • 第四步:分析结论。
  • 如果已经计算出权重,并且判断矩阵满足一致性检验,最终则可以下结论继续进一步分析。

1.判断矩阵为4阶判断矩阵

上表格输出包括特征向量这个中间计算过程值,同时输出权重值。最大特征根用于计算CI值;而CI值用于下面的一致性检验使用。

公司组织旅游,希望综合满足大家的要求,因此让10位旅游专家,对旅游的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),采用1-5分标度法,即比如A因素相对B因素非常重要,此时打5分;A因素相对B因素比较重要,此时打3分;A因素相对B因素重要程度一样,此时为1分。最终构建出判断矩阵,使用SPSSAU 18.0软件进行AHP层次分析。

使用SPSSAU18.0软件进行分析,最终得出特征向量为(0.484,1.667,1.078,0.771),以及最大特征根值为4.071,CI值为0.024。最终总共4项(分别是景色,门票,交通和拥挤度)对应的权重值分别是:12.094%,41.680%,26.948%,19.278%。通过权重值大小可知,门票这个因素的权重最高为41.680%,其次为交通因素,权重为26.948%。

上表格为随机一致性RI表,本次研究判断矩阵为4阶,因此通过上表查看可以得出RI值为0.89。

本次研究构建出4阶判断矩阵,对应着上表可以查询得到随机一致性RI值为0.890,RI值用于下述一致性检验计算使用。

上表格展示一致性检验结果,CR=CI/RI,最终CR值为0.027,说明通过一致性检验。

通常情况下CR值越小,则说明判断矩阵一致性越好,一般情况下CR值小于0.1,则判断矩阵满足一致性检验;如果CR值大于0.1,则说明不具有一致性,应该对判断矩阵进行适当调整之后再次进行分析。

本次针对4阶判断矩阵计算得到CI值为0.024,针对RI值查表为0.890,因此计算得到CR值为0.027 < 0.1,意味着本次研究判断矩阵满足一致性检验,计算所得权重具有一致性,即说明计算权重具有科学性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/619017.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++11 数据结构3 线性表的循环链式存储,实现,测试

上一节课&#xff0c;我们学了线性表 单向存储结构&#xff08;也就是单链表&#xff09;&#xff0c;这个是企业常用的技术&#xff0c;且是后面各种的基本&#xff0c;一定要牢牢掌握&#xff0c;如果没有掌握&#xff0c;下面的课程会云里雾里。 一 &#xff0c;循环链表 1…

cdn加速与ssl加速

cdn CDN的全称是Content Delivery Network&#xff0c;即内容分发网络。其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节&#xff0c;使内容传输的更快、更稳定。 简单的来说&#xff0c;就是把原服务器上数据复制到其他服务器上&#xff0c;用户访…

.net框架和c#程序设计第三次测试

目录 一、测试要求 二、实现效果 三、实现代码 一、测试要求 二、实现效果 数据库中的内容&#xff1a; 使用数据库中的账号登录&#xff1a; 若不是数据库中的内容&#xff1a; 三、实现代码 login.aspx文件&#xff1a; <% Page Language"C#" AutoEventW…

事务隔离级别的无锁实现方式 -- MVCC

MVCC的全称是Multiversion Concurrency Control(多版本并发控制器)&#xff0c;是一种事务隔离级别的无锁的实现方式&#xff0c;用于提高事务的并发性能&#xff0c;即事务隔离级别的一种底层实现方式。 在了解MVCC之前&#xff0c;我们先来回顾一些简单的知识点&#xff1a;…

python botos s3 aws

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html AWS是亚马逊的云服务&#xff0c;其提供了非常丰富的套件&#xff0c;以及支持多种语言的SDK/API。本文针对其S3云储存服务的Python SDK&#xff08;boto3&#xff09;的使用进行介绍。 …

使用阿里云试用Elasticsearch学习:Search Labs Tutorials 搭建一个flask搜索应用

文档&#xff1a;https://www.elastic.co/search-labs/tutorials/search-tutorial https://github.com/elastic/elasticsearch-labs/tree/main/example-apps/search-tutorial Full-Text Search

考试酷基本功修炼课学习历程_FPGA成长篇

本文为明德扬原创文章&#xff0c;转载请注明出处&#xff01;作者&#xff1a;明德扬学员&#xff1a;考试酷账号&#xff1a;11167760 我是硬件工程师&#xff0c;日常工作中主要跟数字电路、模拟电路、嵌入式系统打交道&#xff0c;当然也会涉及到FPGA&#xff0c;但是苦于…

Spring Cloud 集成 RabbitMQ

目录 前言步骤引入相关maven依赖添加相关配置 使用方法配置消息序列化创建第一个消息队列和交换机使用方法 总结 前言 在当今的微服务架构盛行的时代&#xff0c;消息队列作为一种重要的通信机制&#xff0c;在分布式系统中扮演着不可或缺的角色。RabbitMQ&#xff0c;作为一款…

CleanMyMac一键释放Mac潜力的智能助手

在数字化时代&#xff0c;我们的Mac电脑承载着日益增多的数据和文件&#xff0c;使得系统性能逐渐下降&#xff0c;运行缓慢。为了解决这个问题&#xff0c;我们需要一款能够深度清理、优化Mac性能的软件。CleanMyMac&#xff0c;作为Mac系统清理领域的佼佼者&#xff0c;凭借其…

Java(MySQL基础)

数据库相关概念 MySOL数据库 关系型数据库(RDBMS) 概念: 建立在关系模型基础上&#xff0c;由多张相互连接的二维表组成的数据库。特点: 使用表存储数据&#xff0c;格式统一&#xff0c;便于维护使用SQL语言操作&#xff0c;标准统一&#xff0c;使用方便 SQL SOL通用语法…

C++系列-C++前言

什么是C C语言是结构化和模块化的语言&#xff0c;适合处理较小规模的程序&#xff0c;对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要高度的抽象和建模时&#xff0c;C语言则不合适&#xff0c;为了解决软件危机&#xff0c;20世纪80年代&#xff0c;计算机界提出…

Unity类银河恶魔城学习记录12-13 p135 Merge Skill Tree with Dogge skill源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili​​​​​​​ Inventory.cs using System.Collections.Generic; using Un…