软件杯 深度学习图像修复算法 - opencv python 机器视觉

文章目录

  • 0 前言
  • 2 什么是图像内容填充修复
  • 3 原理分析
    • 3.1 第一步:将图像理解为一个概率分布的样本
    • 3.2 补全图像
  • 3.3 快速生成假图像
    • 3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构
    • 3.5 使用G(z)生成伪图像
  • 4 在Tensorflow上构建DCGANs
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学图像修复算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])h0 = tf.nn.relu(self.g_bn0(self.h0))self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,[self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)h1 = tf.nn.relu(self.g_bn1(self.h1))h2, self.h2_w, self.h2_b = conv2d_transpose(h1,[self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)h2 = tf.nn.relu(self.g_bn2(h2))h3, self.h3_w, self.h3_b = conv2d_transpose(h2,[self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)h3 = tf.nn.relu(self.g_bn3(h3))h4, self.h4_w, self.h4_b = conv2d_transpose(h3,[self.batch_size, 64, 64, 3], name='g_h4', with_w=True)return tf.nn.tanh(h4)def discriminator(self, image, reuse=False):if reuse:tf.get_variable_scope().reuse_variables()h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。

for epoch in xrange(config.epoch):...for idx in xrange(0, batch_idxs):batch_images = ...batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \.astype(np.float32)# Update D network_, summary_str = self.sess.run([d_optim, self.d_sum],feed_dict={ self.images: batch_images, self.z: batch_z })# Update G network_, summary_str = self.sess.run([g_optim, self.g_sum],feed_dict={ self.z: batch_z })# Run g_optim twice to make sure that d_loss does not go to zero (different from paper)_, summary_str = self.sess.run([g_optim, self.g_sum],feed_dict={ self.z: batch_z })errD_fake = self.d_loss_fake.eval({self.z: batch_z})errD_real = self.d_loss_real.eval({self.images: batch_images})errG = self.g_loss.eval({self.z: batch_z})

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/624734.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通义千问:官方开放API开发基础

目录 一、模型介绍 1.1主要模型 1.2 计费单价 二、前置条件 2.1 开通DashScope并创建API-KEY 2.2 设置API-KEY 三、基于DashScope SDK开发 3.1 Maven引入SDK 3.2 代码实现 3.3 运行代码 一、模型介绍 通义千问是由阿里云自主研发的大语言模型,用于理解和分…

App Inventor 2 如何预览PDF文档?

预览PDF文档的方式 你可以使用Activity启动器查看已存储在你的设备上的 pdf 文档,也可以使用Web客户端通过网址URL打开 pdf 文档。 App Inventor 2 可以使用 .pdf 扩展名从程序包资产中查看 pdf 文件,不再需要外部 pdf 查看器! 代码如下&a…

无线网络安全之WiFi Pineapple初探

背景 WiFi Pineapple(大菠萝)是由国外无线安全审计公司Hak5开发并售卖的一款无线安全测试神器。集合了一些功能强大的模块,基本可以还原钓鱼攻击的全过程。在学习无线安全时也是一个不错的工具,本文主要讲WiFi Pineapple基础配置…

超越GPT-4V,苹果多模态大模型上新,神经网络形态加速MLLM(一)

4月8日,苹果发布了其最新的多模态大语言模型(MLLM )——Ferret-UI,能够更有效地理解和与屏幕信息进行交互,在所有基本UI任务上都超过了GPT-4V! 苹果开发的多模态模型Ferret-UI增强了对屏幕的理解和交互&am…

vivado 在硬件管理器中调试 AXI 接口

在硬件管理器中调试 AXI 接口 IP integrator 中的 System ILA IP 支持您在 FPGA 上对设计执行系统内调试。在 Versal 器件上 , System ILA 核已被废 弃。现在 , 在含 AXIS 接口的标准 ILA 中支持接口调试。如需监控 IP integrator 块设计中的…

“手撕“数组一些简单的习题

目录 1.数组转字符串 2.数组拷贝 3.求数组中元素的平均值 4.查找数组中指定元素(顺序查找) 5.查找数组中指定元素(二分查找) 6.数组排序(冒泡排序) 7.数组逆序 1.数组转字符串 先让我们看看为什么要转字符串: int[] arr {1,2,3,4,5,6}; System.out.printl…

03-JAVA设计模式-迭代器模式

迭代器模式 什么是迭代器模式 迭代器模式(demo1.Iterator Pattern)是Java中一种常用的设计模式,它提供了一种顺序访问一个聚合对象中各个元素,而又不需要暴露该对象的内部表示的方法。迭代器模式将遍历逻辑从聚合对象中分离出来…

如何用flutter写一个好的登录页面

编写一个好的登录页面是构建用户友好且安全的移动应用的重要一步。下面是使用Flutter编写一个好的登录页面的一些建议和步骤: 1. 设计用户界面 1.简洁明了的布局:确保界面简洁明了,不要过分复杂,避免用户感到困惑。 2.清晰的输入框…

部队营区无线广播-部队营区无线广播音频智能管理播控系统建设浅析

部队营区无线广播音频智能管理播控系统技术方案 由北京海特伟业科技任洪卓发布于 2024年4月16日 一、部队营区无线广播音频智能管理播控系统建设要求 为了响应上级关于恢复播放作息号的指示精神,提升广播系统在部队营区管理中的重要性和可塑性,某部营区…

Docker Container (容器) 常见命令

Docker 容器的生命周期 什么是容器? 通俗地讲,容器是镜像的运行实体。镜像是静态的只读文件,而容器带有运行时需要的可写文件层,并且容器中的进程属于运行状态。即容器运行着真正的应用进程。容 器有初建、运行、停止、暂停和删除…

Python中的设计模式与最佳实践【第166篇—设计模式】

👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Python中的设计模式与最佳实践 在软件开发中,设计模式是一种解决常见问题的经过…

TCP网络程序

上一章我们基于UDP实现了几个网络程序,这一章我们开始使用TCP。 先简单复习一下TCP和UDP的特点: TCP特点 传输层协议有连接可靠传输面向字节流 UDP特点 传输层协议无连接不可靠传输面向数据报 可以看到TCP是有链接的,而UDP是无连接的&#…