竞赛 基于GRU的 电影评论情感分析 - python 深度学习 情感分类

文章目录

  • 1 前言
    • 1.1 项目介绍
  • 2 情感分类介绍
  • 3 数据集
  • 4 实现
    • 4.1 数据预处理
    • 4.2 构建网络
    • 4.3 训练模型
    • 4.4 模型评估
    • 4.5 模型预测
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于GRU的 电影评论情感分析

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1.1 项目介绍

其实,很明显这个项目和微博谣言检测是一样的,也是个二分类的问题,因此,我们可以用到学长之前提到的各种方法,即:

朴素贝叶斯或者逻辑回归以及支持向量机都可以解决这个问题。

另外在深度学习中,我们可以用CNN-Text或者RNN以及LSTM等模型最好。

当然在构建网络中也相对简单,相对而言,LSTM就比较复杂了,为了让不同层次的同学们可以接受,学长就用了相对简单的GRU模型。

如果大家想了解LSTM。以后,学长会给大家详细介绍。

2 情感分类介绍

其实情感分析在自然语言处理中,情感分析一般指判断一段文本所表达的情绪状态,属于文本分类问题。一般而言:情绪类别:正面/负面。当然,这就是为什么本人在前面提到情感分析实际上也是二分类问题的原因。

3 数据集

学长本次使用的是非常典型的IMDB数据集。

该数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评价和50%的负面评价。该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词。

查看其数据集的文件夹:这是train和test文件夹。

在这里插入图片描述

接下来就是以train文件夹介绍里面的内容
在这里插入图片描述

然后就是以neg文件夹介绍里面的内容,里面会有若干的text文件:
在这里插入图片描述

4 实现

4.1 数据预处理

#导入必要的包import zipfileimport osimport ioimport randomimport jsonimport matplotlib.pyplot as pltimport numpy as npimport paddleimport paddle.fluid as fluidfrom paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Embeddingfrom paddle.fluid.dygraph.base import to_variablefrom paddle.fluid.dygraph import GRUUnitimport paddle.dataset.imdb as imdb#加载字典def load_vocab():vocab = imdb.word_dict()return vocab#定义数据生成器class SentaProcessor(object):def __init__(self):self.vocab = load_vocab()def data_generator(self, batch_size, phase='train'):if phase == "train":return paddle.batch(paddle.reader.shuffle(imdb.train(self.vocab),25000), batch_size, drop_last=True)elif phase == "eval":return paddle.batch(imdb.test(self.vocab), batch_size,drop_last=True)else:raise ValueError("Unknown phase, which should be in ['train', 'eval']")

步骤

  1. 首先导入必要的第三方库

  2. 接下来就是数据预处理,需要注意的是:数据是以数据标签的方式表示一个句子,因此,每个句子都是以一串整数来表示的,每个数字都是对应一个单词。当然,数据集就会有一个数据集字典,这个字典是训练数据中出现单词对应的数字标签。

4.2 构建网络

这次的GRU模型分为以下的几个步骤

  • 定义网络
  • 定义损失函数
  • 定义优化算法

具体实现如下


#定义动态GRU
class DynamicGRU(fluid.dygraph.Layer):
def init(self,
size,
param_attr=None,
bias_attr=None,
is_reverse=False,
gate_activation=‘sigmoid’,
candidate_activation=‘relu’,
h_0=None,
origin_mode=False,
):
super(DynamicGRU, self).init()
self.gru_unit = GRUUnit(
size * 3,
param_attr=param_attr,
bias_attr=bias_attr,
activation=candidate_activation,
gate_activation=gate_activation,
origin_mode=origin_mode)
self.size = size
self.h_0 = h_0
self.is_reverse = is_reverse
def forward(self, inputs):
hidden = self.h_0
res = []
for i in range(inputs.shape[1]):
if self.is_reverse:
i = inputs.shape[1] - 1 - i
input_ = inputs[ :, i:i+1, :]
input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)
hidden, reset, gate = self.gru_unit(input_, hidden)
hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)
res.append(hidden_)
if self.is_reverse:
res = res[::-1]
res = fluid.layers.concat(res, axis=1)
return res

class GRU(fluid.dygraph.Layer):def __init__(self):super(GRU, self).__init__()self.dict_dim = train_parameters["vocab_size"]self.emb_dim = 128self.hid_dim = 128self.fc_hid_dim = 96self.class_dim = 2self.batch_size = train_parameters["batch_size"]self.seq_len = train_parameters["padding_size"]self.embedding = Embedding(size=[self.dict_dim + 1, self.emb_dim],dtype='float32',param_attr=fluid.ParamAttr(learning_rate=30),is_sparse=False)h_0 = np.zeros((self.batch_size, self.hid_dim), dtype="float32")h_0 = to_variable(h_0)self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.hid_dim*3)self._fc2 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="relu")self._fc_prediction = Linear(input_dim=self.fc_hid_dim,output_dim=self.class_dim,act="softmax")self._gru = DynamicGRU(size=self.hid_dim, h_0=h_0)def forward(self, inputs, label=None):emb = self.embedding(inputs)o_np_mask =to_variable(inputs.numpy().reshape(-1,1) != self.dict_dim).astype('float32')mask_emb = fluid.layers.expand(to_variable(o_np_mask), [1, self.hid_dim])emb = emb * mask_embemb = fluid.layers.reshape(emb, shape=[self.batch_size, -1, self.hid_dim])fc_1 = self._fc1(emb)gru_hidden = self._gru(fc_1)gru_hidden = fluid.layers.reduce_max(gru_hidden, dim=1)tanh_1 = fluid.layers.tanh(gru_hidden)fc_2 = self._fc2(tanh_1)prediction = self._fc_prediction(fc_2)if label is not None:acc = fluid.layers.accuracy(prediction, label=label)return prediction, accelse:return prediction

4.3 训练模型


def train():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
# with fluid.dygraph.guard(place = fluid.CPUPlace()):

        processor = SentaProcessor()train_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"], phase='train')model = GRU()sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["lr"],parameter_list=model.parameters())steps = 0Iters, total_loss, total_acc = [], [], []for eop in range(train_parameters["epoch"]):for batch_id, data in enumerate(train_data_generator()):steps += 1doc = to_variable(np.array([np.pad(x[0][0:train_parameters["padding_size"]], (0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"]))for x in data]).astype('int64').reshape(-1))label = to_variable(np.array([x[1] for x in data]).astype('int64').reshape(train_parameters["batch_size"], 1))model.train()prediction, acc = model(doc, label)loss = fluid.layers.cross_entropy(prediction, label)avg_loss = fluid.layers.mean(loss)avg_loss.backward()sgd_optimizer.minimize(avg_loss)model.clear_gradients()if steps % train_parameters["skip_steps"] == 0:Iters.append(steps)total_loss.append(avg_loss.numpy()[0])total_acc.append(acc.numpy()[0])print("step: %d, ave loss: %f, ave acc: %f" %(steps,avg_loss.numpy(),acc.numpy()))if steps % train_parameters["save_steps"] == 0:save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)print('save model to: ' + save_path)fluid.dygraph.save_dygraph(model.state_dict(),save_path)draw_train_process(Iters, total_loss, total_acc)

在这里插入图片描述
在这里插入图片描述

4.4 模型评估

在这里插入图片描述

结果还可以,这里说明的是,刚开始的模型训练评估不可能这么好,很明显是过拟合的问题,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将GRU模型换为更为合适的RNN中的LSTM以及bi-
LSTM模型会好很多。

4.5 模型预测


train_parameters[“batch_size”] = 1

with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):sentences = 'this is a great movie'data = load_data(sentences)print(sentences)print(data)data_np = np.array(data)data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)infer_np_doc = to_variable(data_np)model_infer = GRU()model, _ = fluid.load_dygraph("data/save_dir_750.pdparams")model_infer.load_dict(model)model_infer.eval()result = model_infer(infer_np_doc)print('预测结果为:正面概率为:%0.5f,负面概率为:%0.5f' % (result.numpy()[0][0],result.numpy()[0][1]))

在这里插入图片描述

训练的结果还是挺满意的,到此为止,我们的本次项目实验到此结束。

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/625050.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

贵阳市人民政府副市长刘岚调研珈和科技

4月9日,贵阳市人民政府副市长、党组成员刘岚一行到珈和科技走访调研,珈和科技总经理冷伟热情接待了考察团,就企业算力需求与合作,特色产业园区建设,科技成果转化落地等方面进行深入交流。 贵阳市教育局局长李波&#…

Web3D智慧医院平台(HTML5+Threejs)

智慧医院的建设将借助物联网、云计算、大数据、数字孪生等技术,以轻量化渲染、极简架构、三维可视化“一张屏”的形式,让医院各大子系统管理既独立又链接,数据相互融合及联动。 建设医院物联网应用的目标对象(人、物)都…

CSS基础之伪元素选择器(如果想知道CSS的伪元素选择器知识点,那么只看这一篇就足够了!)

前言:我们已经知道了在CSS中,选择器有基本选择器、复合选择器、伪类选择器、那么选择器学习完了吗?显然是没有的,这篇文章讲解最后一种选择器——伪元素选择器。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要了解更多内容可以访问我…

4G/5G布控球/移动执法仪/智能单兵电力巡检远程视频智能监控方案

一、背景与需求 随着科技的不断进步,视频监控技术已成为电力行业不可或缺的一环。电力行业的巡检及建设工作,因施工现场在人迹罕见的野外或山区,地形复杂多变,安全更是重中之重,现场工作的视频图像需实时传回监管中心…

数图智慧零售解决方案,赋能零售行业空间资源价值最大化

数图智慧零售解决方案 赋能零售行业空间资源价值最大 在激烈的市场竞争中,如何更好地提升空间资源价值,提高销售额,成为行业关注的焦点。近日,NIQ发布的《2024年中国饮料行业趋势与展望》称,“在传统零售业态店内&…

Keepalived+LVS+nginx搭建nginx高可用集群

一、简介 nginx是一款非常优秀的反向代理工具,支持请求分发,负载均衡,以及缓存等等非常实用的功能。在请求处理上,nginx采用的是epoll模型,这是一种基于事件监听的模型,因而其具备非常高效的请求处理效率…

一个文生视频MoneyPrinterTurbo项目解析

最近抖音剪映发布了图文生成视频功能,同时百家号也有这个功能,这个可以看做是一个开源的实现,一起看看它的原理吧~ 一句话提示词 大模型生成文案 百家号生成视频效果 MoneyPrinterTurbo生成视频效果 天空为什么是蓝色的? 天空之所以呈现蓝色,是因为大气中的分子和小粒子会…

Elasticsearch:下载、启动和账号密码登录

因为我的电脑是 window,以下都是以 window 环境举例。 一、下载 Elasticsearch 是使用 java 开发的,且 7.8 版本的 ES 需要 JDK 版本 1.8 以上,安装前注意java环境的准备。 官网地址:https://www.elastic.co/cn/ 下载地址&#xf…

使用FastDDS编译IDL文件

1.安装FastDDS环境 Ubuntu22.04 1.1安装依赖的软件 sudo apt-get update //基础工具安装 sudo apt install cmake g python3-pip wget git //Asio 是一个用于网络和低级 I/O 编程的跨平台C库,它提供了一致的 异步模型。 TinyXML2是一个简单,小巧&…

weblogic JSP action的配置

action(如xxx.do)可以在Java文件中通过注解的方式配置,也可以在web.xml中进行配置 在java文件中配置的场合 WebServlet(xxxx.do) 并实现支持的方法:doGet或doPost等 或者 WebServlet(xxxx.do) 并实现service方法 所有method的处理方法都会…

基于afx透明视频的视觉增强前端方案

作者 | 青玉 导读 本文介绍了增长前端团队自研的Webview框架下透明视频视觉增强方案,该方案在保证对视觉进行高度还原的同时可投入更少的开发成本,还能获得更优的前端性能表现。文章首先分析了市面上动画方案的优缺点,然后详细介绍了透明视频…

025——从GUI->Client->Server->driver实现对LED的控制

目录 1、添加服务器中对客户端数据的具体分设备处理 2、实现将数组中的某些位数据转化为整型 3、修改client和server,互相可处理LED 4、结合驱动程序实现对物理设备的控制 4.1 增加驱动处理句柄 4.2 连接驱动处理句柄和tcp通讯接口 4.3 在client端做对应处理…