空心电抗器的matlab建模与性能仿真分析

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

5.完整工程文件


1.课题概述

        空心电抗器是一种无铁芯的电感元件,主要由一圈或多圈导线绕制在非磁性材料制成的空心圆筒或其他形状的骨架上构成。其工作原理基于法拉第电磁感应定律,当交流电通过电抗器时,会在电抗器的绕组中产生自感电动势,阻碍电流的变化,因此起到限制电流、滤波、吸收谐波和提高功率因数的作用。由于电抗器采用的是多包封多层次并联的结构设计的,而且每一层的又有若干个金属导线并联环绕构成,因此,在计算电抗器损耗的时候需要首先计算单个导线的涡流损耗。

2.系统仿真结果

3.核心程序与模型

版本:MATLAB2022a

%不同高度的分析
Hs = [100:5:200]/1000;
for i = 1:length(Hs)i%高度HH = Hs(i);%mm%半径RR = 156.56/1000;%单位长度匝数nn = 26;%磁导率u = 4*pi*10^(-7);Zi= H;Z2= 0;%自感V1 = funcf(R,R,Zi);V2 = funcf(R,R,0);L1(i) = double(4*pi*u*(R)^3*n^2*(V1-V2)); 
end
figure;
plot(Hs,1000*L1,'b-o');
xlabel('高度H');
ylabel('电感量mH');%不同半径的分析
Rs = [100:5:200]/1000;
for i = 1:length(Rs)i%高度HH = 150.5/1000;%mm%半径RR = Rs(i);%单位长度匝数nn = 26;%磁导率u = 4*pi*10^(-7);Zi= H;Z2= 0;%自感V1 = funcf(R,R,Zi);V2 = funcf(R,R,0);L2(i) = double(4*pi*u*(R)^3*n^2*(V1-V2)); 
end
figure;
plot(Rs,1000*L2,'b-o');
xlabel('半径R');
ylabel('电感量mH');%不同匝数的分析
ns = [10:1:30];
for i = 1:length(ns)i%高度HH = 150.5/1000;%mm%半径RR = 156.56/1000;%单位长度匝数nn = ns(i);%磁导率u = 4*pi*10^(-7);Zi= H;Z2= 0;%自感V1 = funcf(R,R,Zi);V2 = funcf(R,R,0);L3(i) = double(4*pi*u*(R)^3*n^2*(V1-V2)); 
endfigure;
plot(ns,1000*L3,'b-o');
xlabel('匝数n');
ylabel('电感量mH');
02_063m

4.系统原理简介

       电抗器的损耗是由三种不同类型的损耗构成的,包括涡流损耗,电阻损耗以及环流损耗三种类型,下面分别对三种损耗的计算过程进行介绍。

        涡流损耗主要是由于电抗器中处于交变磁场影响范围内的线圈产生的涡流而导致的损耗。又由于电抗器是由多个导线绕成,因此我们先分析单个圆形导线的涡流损耗。如图所示,其为单个导线的横截面。

涡流损耗可以通过如下计算公式表示:

    电抗器的阻抗损耗是其最基本的一种损耗表现形式,其计算公式如所示:

       在电抗器正常工作过程中,由于交变磁场的影响,会导致电抗器中不同层次之间的线圈的漏电势不一样,那么就会导致各个线圈之间会产生相应的环流,并导致环流损耗。其计算公式可以表示为:

         通常情况下,电阻损耗是电抗器中的总损耗,一般情况下,随着电抗器半径的增加,其电阻损耗也会增加;而涡流损耗则不仅和半径有关,其还和电抗器的磁场、绕线匝数有关,其随着半径的增加而减少;环流损耗则与各层的电流相关。

5.完整工程文件

v

v

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/630879.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】YOLO-World | 开集目标检测

Date:2024.02.22,Tencent AI Lab,华中科技大学Paper:https://arxiv.org/pdf/2401.17270.pdfGithub:https://github.com/AILab-CVC/YOLO-World 论文解决的问题: 通过视觉语言建模和大规模数据集上的预训练来…

使用python-can和cantools实现arxml报文解析、发送和接收的完整指南

文章目录 背景一、硬件支持二、环境准备1、python解释器安装2、python库安装 三、 收发案例四、 方法拓展1、canoe硬件调用2、回调函数介绍 结论 背景 在汽车行业中,CAN (Controller Area Network) 总线是用于车辆内部通信的关键技术。arxml文件是一种用于描述CAN消…

windows下python opencv ffmpeg读取摄像头实现rtsp推流 拉流

windows下python opencv ffmpeg读取摄像头实现rtsp推流 拉流 整体流程1.下载所需文件1. 1下载rtsp推流服务器1.2 下载ffmpeg2. 开启RTSP服务器3. opencv 读取摄像头并调用ffmpeg进行推流4. opencv进行拉流整体流程 1.下载所需文件 1. 1下载rtsp推流服务器 下载 RTSP服务器 下…

韩顺平Java | C27 正则表达式

入门介绍 需求:提取文本中某类字符 传统方法:遍历每个字符,判断其是否在ASCII码中某种类型得编码范围内,代码量大,效率不高 正则表达式(RegExp, regular expression):处理文本的利器,是对字符…

2024.4.18

学生管理部分 #include<myhead.h> int main(int argc, char *argv[]) {sqlite3* ppDbNULL;if(sqlite3_open("./mydb.db",&ppDb)!SQLITE_OK){printf("sqlite3_open error:%s\n",sqlite3_errmsg(ppDb));return -1;}//创建数据表char arg[128]&quo…

虚拟现实(VR)开发框架

虚拟现实&#xff08;VR&#xff09;开发框架为开发者提供了构建VR应用程序所需的基本工具和功能。它们通常包括3D引擎、场景图、输入系统、音频系统和网络功能。下面是一些流行的VR开发框架。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流…

Next.js多页布局getLayout使用方法

目录 官网解释 直接上代码使用方法展示 1.page页面​编辑 2._app.js页面,也放在pages中​编辑 效果展示 有getLayout展示getLayout返回的页面布局 无getLayout展示默认布局 官网解释 如果需要多个布局&#xff0c;可以添加一个属性getLayout添加到您的页面&#xff0c;允…

架构设计-权限系统之通用的权限系统设计方案

一个系统&#xff0c;如果没有安全控制&#xff0c;是十分危险的&#xff0c;一般安全控制包括身份认证和权限管理。用户访问时&#xff0c;首先需要查看此用户是否是合法用户&#xff0c;然后检查此用户可以对那些资源进行何种操作&#xff0c;最终做到安全访问。身份认证的方…

类和对象(中)(构造函数、析构函数和拷贝构造函数)

1.类的六个默认成员函数 任何类在什么都不写时&#xff0c;编译器会自动生成以下6个默认成员函数。 //空类 class Date{}; 默认成员函数&#xff1a;用户没有显示实现&#xff0c;编译器会自动生成的成员函数称为默认成员函数 2.构造函数 构造函数 是一个 特殊的成员函数&a…

OpenMesh 极小曲面(局部迭代法)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 我们的目标是想得到一个曲率处处为0的曲面,具体操作如下所述: 二、实现代码 #define _USE_MATH_DEFINES #include

(助力国赛)数学建模可视化!!!含代码1(折线图、地图(点)、地图(线)、地图(多边形)、地图(密度)、环形图、环形柱状图、局部放大图)

众所周知&#xff0c;数学建模的过程中&#xff0c;将复杂的数据和模型结果通过可视化图形呈现出来&#xff0c;不仅能够帮助我们更深入地理解问题&#xff0c;还能够有效地向评委展示我们的研究成果。   今天&#xff0c;作者将与大家分享8种强大的数学建模可视化图形及其在…

docker 启动时报错

docker 启动时报如下错误 Job for docker.service failed because the control process exited with error code. See "systemctl status docker.service" and "journalctl -xe" for details 因为安装docker时添加了镜像源 解决方案&#xff1a; mv /etc/…