Ubuntu 微调训练ChatGLM3大语言模型

Ubuntu 微调训练ChatGLM3大语言模型

LLaMA Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。

https://github.com/hiyouga/LLaMA-Factory/tree/main


微调步骤

1.服务器配置

Ubuntu 20.04

8核(vCPU) 32GiB 5Mbps GPU NVIDIA T4 16GB 硬盘 100GiB

CUDA 版本 12.2.2/Driver 版本 535.161.07/CUDNN 版本 8.9.4

查看CUDA版本:nvidia-smi

2.程序和预训练模型文件

程序:

程序保存目录/home/ubuntu/LLaMA-Factory,注意目录权限要可写

git clone https://github.com/hiyouga/LLaMA-Factory.git

预训练模型:

chatglm3-6b

sudo apt-get install git-lfs
#git lfs install
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git

数据集格式参考:

https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md

测试数据集:test_identity.json 需要上传到data目录下

dataset_info.json中需要增加数据集配置

 "test_identity": {"file_name": "test_identity.json","file_sha1": "b4520c447cf95fa0dd2191b79aac23b3702ad58c"}

test_identity.json 数据格式

[{"instruction": "你好","input": "","output": "您好,我是 Robert,一个由 天马行空 开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"},{"instruction": "你好","input": "","output": "您好,我是 Robert,一个由 天马行空 打造的人工智能助手,请问有什么可以帮助您的吗?"}
]

3.Python环境

方式一、安装conda,创建虚拟环境

mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh

创建Python3.10虚拟环境

conda create -n llama_factory python=3.10
conda activate llama_factory

方式二、安装virtualenv,创建虚拟环境(本教程采用这种)

cd /home/ubuntu/LLaMA-Factory
#安装虚拟环境依赖
pip install virtualenv#*创建虚拟环境
virtualenv venv
#*激活虚拟环境
source venv/bin/activate#退出虚拟环境
deactivate

4.安装依赖包

进入虚拟环境进行操作

cd /home/ubuntu/LLaMA-Factory
#设置pip源设置为清华大学的镜像,如果已设置就不用设置查看镜像源使用命令pip config get global.index-url
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
#如果版本是24.0就不用更新
python -m pip install --upgrade pippip install -r requirements.txt

5.运行测试

#进入虚拟环境后执行
CUDA_VISIBLE_DEVICES=0 python src/train_web.py

http://1.14.74.209:7860/

6.训练参数

微调模型:ChatGLM3-6B-Chat

模型路径:/home/ubuntu/THUDM/chatglm3-6b

训练方式:Supervised Fine-Tuning

数据集:test_identity.json

训练轮数:

50 “loss”: 0.805 效果一般

80 “loss”:0.1893 效果还行

100 “loss”:0.0354 效果很好

120 “loss”:0.0216 效果和100轮差不多,所以训练100轮就可以了

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \--stage sft \--do_train True \--model_name_or_path /home/ubuntu/THUDM/chatglm3-6b \--finetuning_type lora \--template chatglm3 \--dataset_dir data \--dataset test_identity \--cutoff_len 1024 \--learning_rate 5e-05 \--num_train_epochs 80.0 \--max_samples 100000 \--per_device_train_batch_size 2 \--gradient_accumulation_steps 8 \--lr_scheduler_type cosine \--max_grad_norm 1.0 \--logging_steps 5 \--save_steps 100 \--warmup_steps 0 \--optim adamw_torch \--report_to none \--output_dir saves/ChatGLM3-6B-Chat/lora/train_2024-04-17-17-19-32 \--fp16 True \--lora_rank 8 \--lora_alpha 16 \--lora_dropout 0.1 \--lora_target query_key_value \--plot_loss True

7.训练截图

请添加图片描述
请添加图片描述

8.测试模型

训练完成后,刷新选择适配器,切换到Chat,加载模型进行测试操作,下图测试可知大模型已经完成了自我认知的训练。
在这里插入图片描述

9.导出微调后模型

导出路径:/home/ubuntu/THUDM/chatglm3-6b-robert

10.测试导出的模型

在项目ChatGLM3Test2中更改模型地址来体验微调后的效果。
参考:https://blog.csdn.net/luobowangjing/article/details/137821901
在这里插入图片描述

通过以上的微调,已成功训练出了一个新的大语言模型,完全改变了自我认知。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/630932.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

政安晨:【Keras机器学习示例演绎】(二)—— 使用 DeepLabV3+ 进行多类语义分割

目录 简介 下载数据 创建 TensorFlow 数据集 构建 DeepLabV3 模型 训练 利用色图叠加进行推理 对验证图像进行推理 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨的博客能够对您有所裨益…

热塑性聚氨酯TPU的特性有哪些?UV胶水能够粘接热塑性聚氨酯TPU吗?又有哪些优势呢?

热塑性聚氨酯(Thermoplastic Polyurethane,TPU)是一种具有多种优异性能的弹性塑料,广泛用于各种应用领域。以下是TPU的一些主要特性: 弹性和柔软性: TPU具有良好的弹性和柔软性,能够在受力后迅速…

2024华中杯C题完整解题思路及代码

C 题 基于光纤传感器的平面曲线重建算法建模 光纤传感技术是伴随着光纤及光通信技术发展起来的一种新型传感器技 术。它是以光波为传感信号、光纤为传输载体来感知外界环境中的信号,其 基本原理是当外界环境参数发生变化时,会引起光纤传感器中光波参量&…

在C#中,PDFsharp库使用(三):PDF提取

PDF提取 一、PDF提取功能,看图 二、PDF提取界面 三、PDF提取代码 //pdf提取---选择文件Button private void button9_Click(object sender, EventArgs e) {string oneFilePath GetOneFilepath();if (!string.IsNullOrEmpty(oneFilePath)){textBox3.Text oneFilePa…

42、二叉树-将有序数组转换为二叉搜索树

思路 什么是二叉搜索树:对于每个节点来说,我的左节点小于我,我的有节点大于等于我 什么是平衡二叉搜索树:对于每个节点来说我左子树深度和我的右子树深度差值不能大于1 既然数组已经有序,所以我们可以直接从中位数开…

C++ 静态成员函数(二)

一、访问静态成员变量 静态成员函数可以通过作用域运算符::来访问类的静态成员变量和静态成员函数 静态成员函数不属于任何特定的对象,而是属于整个类,可以通过类名直接调用,无需创建类的实例。静态成员函数不能访问类的非静态成员变量和非…

软考134-上午题-【软件工程】-进度管理

一、甘特图(了解) 1-1、定义 Gantt图是一种简单的水平条形图,它以日历为基准描述项目任务。 水平轴表示日历时间线(如时、天、周、月和年等),每个条形表示一个任务,任务名称垂直地列在左边的列中,图中水…

2024华中杯B题完整思路代码论文解析

2024华中杯B题思路论文汇总 https://www.yuque.com/u42168770/qv6z0d/xpkf6ax8udqq9lt2?singleDoc# 本文针对电子地图服务商利用车辆轨迹数据估计城市路口信号灯周期的问题,提出了一系列数学模型和算法。通过分析车辆行驶轨迹与信号灯的关联性,在不同的约束条件下,实现了对路…

【赛题】2024年“华中杯”数模竞赛赛题发布

2024年"华中杯"数学建模网络挑战赛——正式开赛!!! 赛题已发布,后续无偿分享各题的解题思路、参考文献,帮助大家最快时间,选择最适合是自己的赛题。祝大家都能取得一个好成绩,加油&a…

Vue项目实现懒加载——自用笔记

熟悉指令语法&#xff1a; <template><HomePanel title"人气推荐" sub-title"人气爆款 不容错过"><ul class"goods-list"><li v-for"item in hotList" :key"item.id"><RouterLink to"/&qu…

【TDSQL】TCPMSS最大数据分段大小值不合理导致JAVA程序连接数据库异常案例

欢迎关注“数据库运维之道”公众号&#xff0c;一起学习数据库技术! TDSQL核心架构原理解析下载链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;vat5 DTC2024 数据技术嘉年华&#xff08;演讲资料下载&#xff09;DTC2024 数据技术嘉年华&#xff08;演讲资料下载…

车联网大数据与人工智能一体化:开启智慧出行新时代

随着物联网技术的快速发展&#xff0c;车联网已经成为了汽车行业的重要趋势之一。而在车联网的发展过程中&#xff0c;大数据和人工智能的应用也日益成为关键因素。本文将探讨如何将大数据与人工智能一体化应用于车联网&#xff0c;以实现智慧出行的目标。 尤其是近来国内的华为…