备战秋招012(20230808)

文章目录

  • 前言
  • 一、今天学习了什么?
  • 二、动态规划
    • 1.概念
    • 2.题目
  • 总结


前言

提示:这里为每天自己的学习内容心情总结;

Learn By Doing,Now or Never,Writing is organized thinking.


提示:以下是本篇文章正文内容

一、今天学习了什么?

  • 学习了代码随想录关于动态规划的算法;
  • 还有01背包问题

二、动态规划

1.概念

「动态规划」(Dynamic Programming),适用于很多重叠子问题的场景**,每一个结果一定是由于上一个状态推导出来的,选择和状态转移**。解题步骤如下:

  • 确定dp数组(dp table)以及下标的含义;
  • 确定递推公式;
  • dp数组如何初始化;
  • 确定遍历顺序;
  • 举例推导dp数组;

01 背包问题」是指,有 n 个物品和一个最多能背负 w 重量的背包,求该背包能背负的最大重量。第 i 个物品的重量为 weight[i] ,价值为 value[i] 。

有两种解法:

  • 二维数组:
    • dp[i] [j] ,表示从下标为 [0,i] 的物品中,放进背包容量为 j 时的最大价值;
    • 确定遍历的顺序,先遍历背包容量,再去逐个遍历物品个数;
  • 一维数组:
    • dp[i] ,表示背包容量为 i 时的背包最大价值;
    • 先遍历物品,再去遍历背包容量,并且保证遍历背包容量时是从大到小的,保证物品只会被放入了一次。
    /*** - 采用二维数组解决背包问题* - 只有当当前背包的容量能放下当前物品的重量时,才需要去判断是否需要将物品放入背包中* - 按照先遍历物品,再去遍历背包容量的顺序执行*/public static int testWeightBagProblem01(int[] weight, int[] value, int bagSize) {int m = weight.length;int[][] dp = new int[m][bagSize + 1];for (int j = weight[0]; j <= bagSize; j++) {dp[0][j] = value[0];}for (int j = 1; j <= bagSize; j++) {for (int i = 1; i < m; i++) {if (j >= weight[i]) {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);} else {dp[i][j] = dp[i - 1][j];}}}return dp[m - 1][bagSize];}/*** - 一维数组* - 背包容量的最大值取决于之前背包容量更小时候的最大值*/public static int testWeightBagProblem02(int[] weight, int[] value, int bagSize) {int[] dp = new int[bagSize + 1];for (int i = 0; i < weight.length; i++) {// 先遍历物品for (int j = bagSize; j >= weight[i]; j--) {// 再去遍历背包容量// 判断将此物品放入背包的结果dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]); //不放、放}}return dp[bagSize];}

2.题目

  • 509. 斐波那契数
    public int fib(int n) {if (n == 0 || n == 1) {return n;}/*** 动态规划* - dp数组* - 选择* - 状态转移* dp[i] 代表f(n)*/int[] dp = new int[n + 3];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
  • 70. 爬楼梯
    public int climbStairs(int n) {if (n == 1 || n == 2) {return n;}/*** 遇到重叠子问题,采用动态规划* - dp数组含义:dp[i]表示有dp[i]种方法可以爬到楼顶(楼顶的台阶数为i)* - 初始化* - 状态转移和选择*/int[] dp = new int[n + 1];dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
  • 746. 使用最小花费爬楼梯
    public int minCostClimbingStairs(int[] cost) {/*** - 采用动态规划* - dp[i]:爬上i层使用的最少的花费*/int[] dp = new int[cost.length + 1];for (int i = 2; i <= cost.length; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.length];}
  • 62. 不同路径
    public int uniquePaths(int m, int n) {/*** - 每次都需要选择,采用动态规划* - dp[i][j]:到达(i,j)点的路径*/int[][] dp = new int[m][n];for (int i = 0; i < m; i++) {dp[i][0] = 1;}for (int j = 0; j < n; j++) {dp[0][j] = 1;}for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
  • 63. 不同路径 II
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {/*** 还是使用动态规划,只不过需要判断是否可达*/int m = obstacleGrid.length;int n = obstacleGrid[0].length;int[][] dp = new int[m][n];for (int i = 0; i < m; i++) {if (obstacleGrid[i][0] == 1) {break;}dp[i][0] = 1;}for (int j = 0; j < n; j++) {if (obstacleGrid[0][j] == 1) {break;}dp[0][j] = 1;}for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) {continue;}dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
  • 343. 整数拆分
    public int integerBreak(int n) {if (n <= 3) {return n - 1;}/*** - 如何使用动态规划呢?* - 就需要从怎么拆入手* - 是否要拆,取决于拆完后结果和之前的结果谁更大*/int[] dp = new int[n + 1];dp[2] = 1;for (int i = 3; i <= n; i++) {for (int j = 1; j <= i - j; j++) {dp[i] = Math.max(dp[i], Math.max((i - j) * j, dp[i - j] * j));}}return dp[n];}public int integerBreak2(int n) {if (n <= 3) {return n - 1;}/*** - 这是纯数学解答* - 任何整数都可以拆成2和3* - 怎么拆,取决于模上3的余数是多少*/int remainder = n % 3;int times = n / 3;if (remainder == 0) {return (int) Math.pow(3, times);} else if (remainder == 1) {return (int) Math.pow(3, times - 1) * 4;} else {return (int) Math.pow(3, times) * 2;}}
  • 96. 不同的二叉搜索树(⭐⭐⭐⭐⭐)

这个题有点难,在于如何的合适区拆分成子问题:

应该先举几个例子,画画图,看看有没有什么规律,如图:

  • n = 1 , 2 时都很直观;
  • n = 3 时,分为:
    • 当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!
    • 当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!
    • 当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!
    • dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量;
      • dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2];
      • 元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量;
      • 元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量;
      • 元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量;
96.不同的二叉搜索树

96.不同的二叉搜索树2

    public int numTrees(int n) {/*** - 这个题有点难,在于如何正确的处理拆分子问题* - dp[i],代表i个节点组成的二叉搜索树的种数* - 拆分为 1.2.3.....i 为头节点组成的二叉搜索树的之和就是i个节点组成的二叉搜索树的种数*/int[] dp = new int[n + 1];dp[0] = 1;dp[1] = 1;for (int i = 2; i <= n; i++) {for (int j = 1; j <= i; j++) {dp[i] += dp[i - j] * dp[j - 1];}}return dp[n];}
  • 416. 分割等和子集(⭐⭐⭐)
    public boolean canPartition(int[] nums) {/*** - 可以将问题看成,是否能将数组中的元素凑出数组元素和的一半* - 背包容量为一半的数组和,物品价值和物品重量都是nums数组* - 采用一维数组的话,dp[i]代表数组容量为i时能背的最大价值*/int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}if (sum % 2 != 0) {return false;}sum /= 2;int[] dp = new int[sum + 1];for (int i = nums[0]; i <= sum; i++) {dp[i] = nums[0];}for (int i = 1; i < nums.length; i++) {for (int j = sum; j >= nums[i]; j--) {dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}}return dp[sum] == sum;}
  • 1049. 最后一块石头的重量 II
    public int lastStoneWeightII(int[] stones) {/*** - 也是背包问题*/int sum = 0;for (int i = 0; i < stones.length; i++) {sum += stones[i];}int target = sum / 2;int[] dp = new int[target + 1];for (int i = stones[0]; i <= target; i++) {dp[i] = stones[0];}for (int i = 1; i < stones.length; i++) {for (int j = target; j >= stones[i]; j--) {dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - 2 * dp[target];}

总结

提示:这里对文章进行总结:

今天效率一般,心情有点emo,很害怕。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/63411.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

日常BUG —— Java判空注解

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;日常BUG、BUG、问题分析☀️每日 一言 &#xff1a;存在错误说明你在进步&#xff01; 一. 问题描述 问题一&#xff1a; 在使用Java自带的注解NotNull、NotEmpty、NotBlank时报错&#xff0c;…

开封Geotrust单域名https证书推荐

Geotrust作为全球领先的数字证书颁发机构之一&#xff0c;拥有多年的数字证书颁发经验&#xff0c;其数字证书被广泛应用于电子商务、在线支付、企业通讯、云计算等领域&#xff0c;为用户提供了安全可靠的保障。而Geotrust旗下的单域名https证书是大多数客户创建网站时的选择之…

Qt应用开发(基础篇)——拆分器窗口 QSplitter QSplitterHandle

一、前言 QSplitter继承于QFrame&#xff0c;QFrame继承于QWidget&#xff0c;是Qt的一个部件容器工具类。 框架类QFrame介绍 QSplitter拆分器&#xff0c;用户通过拖动子部件之间的边界来控制子部件的大小&#xff0c;在应用开发中数据分模块展示、图片展示等场景下使用。 二、…

设计模式篇

工厂方法模式 简单工厂模式 工厂方法模式 抽象工厂模式 策略模式 责任链模式

【STM32RT-Thread零基础入门】 3. PIN设备(GPIO)的使用

硬件&#xff1a;STM32F103ZET6、ST-LINK、usb转串口工具、4个LED灯、1个蜂鸣器、4个1k电阻、2个按键、面包板、杜邦线 文章目录 前言一、PIN设备介绍1. 引脚编号获取2. 设置引脚的输入/输出模式3. 设置引脚的电平值4. 读取引脚的电平值5. 绑定引脚中断回调函数6. 脱离引脚中断…

Linux如何开启指定端口号

本文已收录于专栏 《运维》 目录 概念说明防火墙端口号 提供服务具体分类具体操作防火墙操作端口号操作 总结提升 概念说明 防火墙 防火墙是一种网络安全设备或软件&#xff0c;用于监控和控制网络流量&#xff0c;保护网络免受恶意攻击和未经授权的访问。防火墙可以根据预定义…

设计模式之简单工厂模式

一、概述 定义一个用于创建对象的接口&#xff0c;让子类决定实例化哪一个类。FactoryMethod使一个类的实例化延迟到其子类。 简单工厂模式&#xff1a;又叫做静态工厂方法模式&#xff0c;是由一个工厂对象决定创建出哪一种产品类的实例。 二、适用性 1.当一个类不知道它所…

wireshark入门指北

文章目录 前言安装Linux上wireshark安装 使用捕获的时候添加过滤条件抓取浏览器https内容 附录抓取非浏览器的https流量 前言 本文长期维护&#xff0c;记录使用wireshark的使用过程。 虽然有官方文档-Wireshark User’s Guide&#xff0c;但是不想去慢慢读。应用层的图形软件…

解决android studio妙明奇妙出现的模拟器

1&#xff0c;查看设备 adb devices 2&#xff0c; adb命令断开指定的设备 要断开ADB与特定设备的连接&#xff0c;可以使用以下命令&#xff1a; adb disconnect <设备ID> 将 <设备ID> 替换为您要断开连接的设备的实际ID。设备ID可以在运行 adb devices 命令…

项目中使用git vscode GitHubDesktopSetup-x64

一、使用git bash 1.使用git bash拉取gitee项目 1.在本地新建一个文件夹&#xff08;这个文件夹是用来存放从gitee上拉下来的项目的&#xff09; 2.在这个文件夹右键选择 git bash here 3.输入命令 git init (创建/初始化一个新的仓库) 4.输入命令 git remote add origin …

伪类和伪元素有何区别?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 伪类&#xff08;Pseudo-class&#xff09;⭐ 伪元素&#xff08;Pseudo-element&#xff09;⭐ 区别总结⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前…

【Linux】网络基础2

文章目录 网络基础21. 应用层1.1 协议1.2 HTTP 协议1.2.1 URL1.2.2 urlencode和urldecode1.2.3 HTTP协议格式1.2.4 HTTP的方法1.2.5 HTTP的状态码1.2.6 HTTP 常见的header1.2.7 最简单的HTTP服务器 2. 传输层2.1 端口号2.1.1 端口号范围划分2.1.2 认识知名端口号2.1.3 netstat2…