Modelsim自动化仿真脚本(TCL)——简单实例

目录

1. Modelsim与TCL脚本的关系

2.实验文件

2.1设计文件

2.2仿真测试文件

2.3. 脚本文件

3. 实验步骤

3.1. 创建文件夹

3.2. 指定路径

3.3. 创建工程

3.4. 运行命令

3.4. 实验效果


1. Modelsim与TCL脚本的关系

       TCL(Tool Command Language)是一种脚本编程语言,由John Ousterhout在1988年开发。TCL是一种通用的、高级的、解释执行的脚本语言,它特别适合用于快速原型开发、测试、自动化任务以及GUI开发。TCL语言设计简单,易于学习和使用,它具有可扩展性,可以通过添加库来扩展其功能。
        ModelSim是由Mentor Graphics(现在是Siemens EDA的一部分)开发的一款行业标准的硬件描述语言(HDL)仿真工具。它支持多种HDL语言,包括VHDL、Verilog和SystemVerilog,用于验证数字电路和系统的设计。
       TCL脚本与ModelSim的关系在于,ModelSim提供了对TCL脚本的支持,使得用户可以使用TCL脚本来控制仿真环境、运行仿真、管理项目、处理结果等。通过编写TCL脚本,用户可以自动化ModelSim的许多操作,提高工作效率,实现复杂的测试流程,以及进行批量处理。例如,用户可以编写TCL脚本来自动化测试套件的执行,收集和分析仿真结果,甚至修改仿真参数并重新运行仿真,从而实现更加高效的验证流程。


2.实验文件

2.1. 设计文件

`timescale  1ns/1nsmodule  complex_fsm(input   wire    sys_clk         ,   //系统时钟50MHzinput   wire    sys_rst_n       ,   //全局复位input   wire    pi_money_one    ,   //投币1元input   wire    pi_money_half   ,   //投币0.5元output  reg     po_money        ,   //po_money为1时表示找零//po_money为0时表示不找零output  reg     po_cola             //po_cola为1时出可乐//po_cola为0时不出可乐
);//----------------------------------------------------------------------
//parameter define
//只有五种状态,使用独热码
parameter   IDLE     = 5'b00001;
parameter   HALF     = 5'b00010;
parameter   ONE      = 5'b00100;
parameter   ONE_HALF = 5'b01000;
parameter   TWO      = 5'b10000;//wire  define
wire    [1:0]   pi_money;
//reg   define
reg     [4:0]   state;//----------------------------------------------------------------------
//maincode
//pi_money:为了减少变量的个数,我们用位拼接把输入的两个1bit信号拼接成1个2bit信号。投币方式可以为:不投币(00)、投0.5元(01)、投1元(10),每次只投一个币
assign pi_money = {pi_money_one, pi_money_half};//第一段状态机,描述当前状态state如何根据输入跳转到下一状态
always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)state <= IDLE;  //任何情况下只要按复位就回到初始状态else	case(state)IDLE    : if(pi_money == 2'b01)   //判断一种输入情况state <= HALF;else    if(pi_money == 2'b10)//判断另一种输入情况state <= ONE;elsestate <= IDLE;HALF    : if(pi_money == 2'b01)state <= ONE;else    if(pi_money == 2'b10)state <= ONE_HALF;elsestate <= HALF;ONE     : if(pi_money == 2'b01)state <= ONE_HALF;else    if(pi_money == 2'b10)state <= TWO;elsestate <= ONE;ONE_HALF: if(pi_money == 2'b01)state <= TWO;else    if(pi_money == 2'b10)state <= IDLE;elsestate <= ONE_HALF;TWO     : if((pi_money == 2'b01) || (pi_money == 2'b10))state <= IDLE;elsestate <= TWO;//如果状态机跳转到编码的状态之外也回到初始状态default :       state <= IDLE;endcase//第二段状态机,描述当前状态state和输入pi_money如何影响po_cola输出
always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)po_cola <= 1'b0;else    if((state == TWO && pi_money == 2'b01) || (state == TWO && pi_money == 2'b10) || (state == ONE_HALF && pi_money == 2'b10))po_cola <= 1'b1;elsepo_cola <= 1'b0;//第二段状态机,描述当前状态state和输入pi_money如何影响po_money输出
always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n ==	1'b0)po_money <= 1'b0;else if((state == TWO) && (pi_money == 2'b10))po_money <= 1'b1;elsepo_money <= 1'b0;endmodule

2.2. 仿真测试文件

关于随机数可参考:Modelsim怎样在测试平台文件中快捷使用随机数?-CSDN博客

`timescale  1ns/1nsmodule  tb_complex_fsm();//----------------------------------------------------------------------
//reg   define
reg         sys_clk;
reg         sys_rst_n;
reg         pi_money_one;
reg         pi_money_half;
reg         random_data_gen;//wire  define
wire        po_cola;
wire        po_money;
//----------------------------------------------------------------------
//初始化系统时钟、全局复位
initial beginsys_clk    = 1'b1;sys_rst_n <= 1'b0;#20sys_rst_n <= 1'b1;
end//sys_clk:模拟系统时钟,每10ns电平翻转一次,周期为20ns,频率为50MHz
always  #10 sys_clk = ~sys_clk;//random_data_gen:产生非负随机数0、1
always@(posedge sys_clk or negedge sys_rst_n)if(!sys_rst_n)random_data_gen <= 1'b0;elserandom_data_gen <= {$random} % 2;//pi_money_one:模拟投入1元的情况
always@(posedge sys_clk or negedge sys_rst_n)if(!sys_rst_n)pi_money_one <= 1'b0;elsepi_money_one <= random_data_gen;//pi_money_half:模拟投入0.5元的情况
always@(posedge sys_clk or negedge sys_rst_n)if(!sys_rst_n)pi_money_half <= 1'b0;elsepi_money_half <= ~random_data_gen;  //取反是因为一次只能投一个币,即pi_money_one和pi_money_half不能同时为1//------------------------------------------------------------
//将RTL模块中的内部信号引入到Testbench模块中进行观察打印
wire    [4:0]   state    = complex_fsm_inst.state;
wire    [1:0]   pi_money = complex_fsm_inst.pi_money;initial begin$timeformat(-9, 0, "ns", 6);$monitor("@time %t: pi_money_one=%b pi_money_half=%b pi_money=%b state=%b po_cola=%b po_money=%b", $time, pi_money_one, pi_money_half, pi_money, state, po_cola, po_money);
end
//------------------------------------------------------------
complex_fsm complex_fsm_inst(.sys_clk        (sys_clk        ),  //input     sys_clk.sys_rst_n      (sys_rst_n      ),  //input     sys_rst_n.pi_money_one   (pi_money_one   ),  //input     pi_money_one.pi_money_half  (pi_money_half  ),  //input     pi_money_half.po_cola        (po_cola        ),  //output    po_money.po_money       (po_money       )   //output    po_cola
);  endmodule

2.3. 脚本文件

1) `quit -sim` :退出仿真,如果当前modelsim中具有仿真运行,可以将其中止并退出仿真界面。

2)`.main clear ` :清除modelsim Transcript中的内容

3)`vlog "../src*.v" `:vlog为编译的意思,则../src/*.v代表路径。因为FPGA设计文件在src中,所以需要用../退到上一级文件夹,再选择src/*.v(即该文件夹下的所有.v文件)。如果不需要全部编译,也可以指定文件(vlog "../src/complex_fsm.v)。

4) `vsim`:这是ModelSim/QuestaSim的仿真命令,用于启动仿真。

5)`-t ns`这个选项指定了仿真的时间单位。在这个例子中,`-t ns`表示时间单位是纳秒(nanoseconds)。

6)`-voptargs=+acc`:这个选项用于传递参数给仿真优化工具(vopt)。`+acc`是一个特定的参数,它启用了额外的信号可访问性,这通常用于波形查看或交互式调试。`+acc`选项会使得更多的信号在仿真中可见,这可能会影响仿真的性能,因为需要跟踪更多的信号。

7)`work.tb_complex_fsm`: 这部分指定了要仿真的测试台(testbench)。`work`是ModelSim/QuestaSim中默认的库名,`tb_complex_fsm`是测试台的名字。在ModelSim/QuestaSim中,所有编译好的设计和测试台都存储在一个名为“work”的库中,除非你在编译时指定了其他的库名。

8)`add wave -driver {tb_complex_fsm}`:这条命令在波形显示中添加一个分隔线,用以区分不同的信号组。`{tb_complex_fsm}`是分隔线的标签。

9)`add wave tb_complex_fsm/*`: 这条命令将`tb_complex_fsm`测试台中所有的信号添加到波形显示中。``是一个通配符,表示添加所有信号。

10)`add wave -divider {complex_fsm}`: 这条命令在波形显示中添加一个分隔线,用以区分不同的信号组。`{complex_fsm}`是分隔线的标签。

11)`add wave -radix decimal tb_complex_fsm/complex_fsm_inst/*`: 这条命令将`tb_complex_fsm/complex_fsm_inst/`下的所有信号添加到波形显示中,并且设置这些信号的显示基数为十进制。这意味着这些信号的值将以十进制形式显示,而不是默认的二进制或十六进制。

12)`virtual function {(vir_new_signal)tb_complex_fsm/complex_fsm_inst/state} new_state`:这条命令创建了一个虚拟信号`new_state`,它是基于`tb_complex_fsm/complex_fsm_inst/state`信号的函数。这里的`vir_new_signal`可能是一个自定义的函数,用于处理`state`信号并生成`new_state`虚拟信号。

13)`add wave -color red -itemcolor blue tb_complex_fsm/complex_fsm_inst/new_state`: 这条命令将虚拟信号`new_state`添加到波形显示中,并设置该信号的波形颜色为红色,信号项的颜色为蓝色。

#---------------------------------------------------------------------
#基础配置
quit -sim
.main clear#---------------------------------------------------------------------
#包含文件
vlog "../src/*.v"
vlog "*.v"
#开始仿真
vsim -t ns -voptargs=+acc work.tb_complex_fsm#---------------------------------------------------------------------
# 添加虚拟类型
virtual    type {
{01 IDLE}
{02 HALF}
{04 ONE}
{08 ONE_HALF}
{16 TWO}
} vir_new_signal#----------------------------------------------------------------------
#添加波形
add wave -divider {tb_complex_fsm} add wave tb_complex_fsm/*
add wave -divider {complex_fsm_inst}
add wave -radix decimal tb_complex_fsm/complex_fsm_inst/* 
virtual    function {(vir_new_signal)tb_complex_fsm/complex_fsm_inst/state} new_state
add wave  -color red  -itemcolor blue  tb_complex_fsm/complex_fsm_inst/new_stateconfigure wave -timelineunits us
#----------------------------------------------------------------------
#运行
run 10us

3. 实验步骤

3.1. 创建文件夹

       按照如图方式创建modelsim_test、src、sim三个文件夹,并将FPGA设计文件和测试平台文件和自动化脚本放入如图文件夹

3.2. 指定路径

       打开软件更改Change Directory路径为3.1.的sim文件夹

3.3. 创建工程

3.4. 运行命令

3.4. 实验效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/636708.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue.js------Vue组件基础

能够理解Vue组件概念和作用能够掌握封装创建组件能力能够使用组件之间通信能够完成todo案例 一.Vue组件创建和使用 1.折叠面板-实现多个 创建一个文件夹demo 具体步骤请参考vue.js---vue基础 ⚫ 解决方案: 采用vue提供的单.vue文件-组件方式来封装一套然后复用 在component…

C++:面向对象大坑:菱形继承

菱形继承 1.单继承1.概念 2.多继承2.1概念2.2菱形继承1.概念2.问题3.样例理解二义性数据冗余对于内存模型抽象化 2.3菱形虚拟继承&#xff08;解决菱形继承的问题&#xff09;1.概念2.样例理解对于内存模型抽象化 2.4总结 3.问题总结1.C有多继承&#xff0c;为什么&#xff1f;…

xpath为元素路径定位

selenium4 pytest支持更多的包 和unittest对比 yaml数据驱动 allure报告 日志 数据库 通过jenkins发送消息 下载chromedriver Chrome for Testing availability https://googlechromelabs.github.io/chrome-for-testing/ 把chromedriver放到python文件夹里面 浏览…

【编译原理】03语法分析

1&#xff0c;语法分析的若干问题 1.1 语法分析器的作用 编译器前端的重要组成部分&#xff1a; (1) 根据词法分析器提供的记号流&#xff0c;为语法正确的输入构造分析树(或语法树)。 (2) 检查输入中的语法(可能包括词法)错误&#xff0c;并调用出错处理器进…

在Gtiee搭建仓库传代码/多人开发/个人代码备份---git同步---TortoiseGit+TortoiseSVN

文章目录 前言1.安装必要软件2. Gitee建立新仓库git同步2.1 Gitee建立新仓库2.2 Gitee仓库基本配置2.3 Git方式进行同步 3. TortoiseGitTortoiseSVN常用开发方式3.1 秘钥相关3.2 TortoiseGit拉取代码TortoiseGit提交代码 4. 其他功能探索总结 前言 正常企业的大型项目都会使用…

HackMyVM-Hommie

目录 信息收集 arp nmap WEB web信息收集 dirsearch ftp tftp ssh连接 提权 系统信息收集 ssh提权 信息收集 arp ┌──(root㉿0x00)-[~/HackMyVM] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 08:00:27:77:ed:84, IPv4: 192.168.9.126 Starting arp-…

【C++】STL:vector常用接口的使用和模拟实现

Hello everybody!这篇文章主要给大家讲讲vector常用接口的模拟实现&#xff0c;STL库中的实现一层套着一层&#xff0c;十分复杂&#xff0c;目前阶段还不适合看源代码。而模拟实现可以让我们从底层上了解这些接口的原理从而更好的使用这些接口。另外我还会讲一些在vector使用过…

python爬虫笔记1

1 爬虫介绍 爬虫概述&#xff1a; 获取网页并提取和保存信息的自动化程序 1.获取网页 2.提取信息 css选择器 xpath 3.保存数据&#xff08;大数据时代&#xff09; 4.自动化 爬虫&#xff08;资产收集&#xff0c;信息收集&#xff09; 漏扫&#xff08;帮我发现漏洞&#xff…

mac电脑mysql下载与安装

mysql下载地址 历史下载地址 MySQL :: Download MySQL Community Server (Archived Versions) mac 版下载 mac版本分为 Intel 处理器 和 M系列处理器。 从 8.0.26开始&#xff0c; mysql 支持M系列处理器。 以前的都只有Intel 处理器的。 Intel 处理器选择 x86_64 M 系列处理…

【PCL】教程conditional_euclidean_clustering 对输入的点云数据进行条件欧式聚类分析...

[done, 3349.09 ms : 19553780 points] Available dimensions: x y z intensity 源点云 Statues_4.pcd 不同条件函数output.pcd 【按5切换到强度通道可视化】 终端输出&#xff1a; Loading... >> Done: 1200.46 ms, 19553780 points Downsampling... >> Done: 411…

色彩的魔力:渐变色在设计中的无限可能性

夕阳&#xff0c;天空&#xff0c;湖面&#xff0c;夕阳...随着距离和光影的变化&#xff0c;颜色的渐变色&#xff0c;近大远小、近实远虚的透视&#xff0c;为大自然营造了浪漫的氛围。延伸到UI/UX设计领域&#xff0c;这种现实、惊艳、独特的渐变色也深受众多设计师的喜爱。…