分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测

分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测

目录

    • 分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
      • 效果一览
      • 基本介绍
      • 研究内容
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测(Matlab完整程序和数据)
1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。
2.多特征输入模型,直接替换数据就可以用。
3.语言为matlab。分类效果图,混淆矩阵图。
4.分类效果图,混淆矩阵图。
运行环境matlab2018及以上。
经过特征选择后,保留9个特征的序号为:
1 3 5 7 8 9 10 11 12

研究内容

最大互信息系数(Maximum Information Coefficient,MIC)是一种常用的数据特征选择算法,用于发现特征之间的非线性关系。它可以测量两个变量之间的最大相关性。首先,准备一个包含多个特征和目标变量的数据集。对于每对特征和目标变量,计算它们之间的互信息值。互信息度量了两个变量之间的相关性。将计算得到的互信息值进行排序,按照互信息值的大小进行降序排列。从排序后的互信息值列表中选择具有最大互信息系数的特征。可以根据具体需求选择一定数量的特征。最大互信息系数算法的核心思想是找到特征与目标变量之间的最大相关性,因此选择具有最大互信息系数的特征可以被认为是最相关的特征。这种选择方法可以帮助排除那些与目标变量关联较弱的特征,提高模型的性能和效率。在实际应用中,可以结合其他特征选择方法或降维技术来进一步优化特征选择过程。

程序设计

  • 完整程序和数据下载方式(资源处直接下载):Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test ;%%  特征选择
k = 9;        % 保留特征个数
[save_index, mic] = mic_select(p_train, t_train, k);%%  输出选择特征的对应序号
disp('经过特征选择后,保留9个特征的序号为:')
disp(save_index')%%  特征重要性
figure
bar(mic)
xlabel('输入特征序号')
ylabel('最大互信息系数')%%  特征选择后的数据集
p_train = p_train(save_index, :);
p_test  = p_test (save_index, :);%%  输出编码
t_train = ind2vec(t_train);
t_test  = ind2vec(t_test );%%  创建网络
net = newff(p_train, t_train, 5);%%  设置训练参数
net.trainParam.epochs = 1000;  % 最大迭代次数
net.trainParam.goal = 1e-6;    % 误差阈值
net.trainParam.lr = 0.01;      % 学习率%%  训练网络
net = train(net, p_train, t_train);%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'MIC-BP预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'MIC-BP预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/63730.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Docker晋升记】No.2 --- Docker工具安装使用、命令行选项及构建、共享和运行容器化应用程序

文章目录 前言🌟一、Docker工具安装🌟二、Docker命令行选项🌏2.1.docker run命令选项:🌏2.2.docker build命令选项:🌏2.3.docker images命令选项:🌏2.4.docker ps命令选项…

多线程与高并发--------阻塞队列

四、阻塞队列 一、基础概念 1.1 生产者消费者概念 生产者消费者是设计模式的一种。让生产者和消费者基于一个容器来解决强耦合问题。 生产者 消费者彼此之间不会直接通讯的,而是通过一个容器(队列)进行通讯。 所以生产者生产完数据后扔到…

matlab使用教程(14)—稀疏矩阵的运算

1.运算效率 1.1计算复杂度 稀疏运算的计算复杂度与矩阵中的非零元素数 nnz 成比例。计算复杂度在线性上还与矩阵的行大小 m 和列大小 n 相关,但与积 m*n(零元素和非零元素总数)无关。相当复杂的运算(例如对稀疏线性方程求解&…

RabbitMQ 事务

事务简介 就像我们了解的MySQL中的事务一样,RabbiMQ的事务也具备原子性和一致性,并且RabbiMQ的事务是针对消息从生产者发送到RabbitMQ中提供的支持,因此不同事务可以同时给同一个队列发送信息。   可通过channel.txSelect,chann…

Android侧滑栏(一)可缩放可一起移动的侧滑栏

在实际的各类App开发中,经常会需要做一个左侧的侧滑栏,类似于QQ这种。 今天这篇文章总结下自己在开发中遇到的这类可以跟随移动且可以缩放的侧滑栏。 一、实现原理 使用 HorizontalScrollView 实现一个水平方向的可滑动的View,左布局为侧滑…

MySQL多表关联查询

目录 1. inner join: 2. left join: 3. right join: 4.自连接 5.交叉连接: 6、联合查询 7、子查询 1. inner join: 代表选择的是两个表的交差部分。 内连接就是表间的主键与外键相连,只取得键值一致…

Grafana展示k8s中pod的jvm监控面板/actuator/prometheus

场景 为保障java服务正常运行,对服务的jvm进行监控,通过使用actuator组件监控jvm情况,使用prometheus对数据进行采集,并在Grafana展现。 基于k8s场景 prometheus数据收集 配置service的lable,便于prometheus使用labl…

【ES6】深入理解ES6(1)

一、块级作用域绑定 var声明及变量提升机制 二、字符串和正则表达式 字符串(String)是JavaScript6大原始数据类型。其他几个分别是Boolean、Null、Undefined、Number、Symbol(es6新增)。 更好的Unicode支持 1. UTF-16码位 字…

【Archaius技术专题】「Netflix原生态」动态化配置服务之微服务配置组件变色龙

前提介绍 如果要设计开发一套微服务基础架构,参数化配置是一个非常重要的点,而Netflix也开源了一个叫变色龙Archaius的配置中心客户端,而且Archaius可以说是比其他客户端具备更多生产级特性,也更灵活。*在NetflixOSS微服务技术栈…

《Java-SE-第三十四章》之Optional

前言 在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!” 博客主页:KC老衲爱尼姑的博客主页 博主的github,平常所写代码皆在于此 共勉:talk is cheap, show me the code 作者是爪哇岛的新手,水平很有限&…

RFID工业识别技术:供应链智能化的科技颠覆

RFID工业识别技术,作为物联网的先锋,正在供应链管理领域展现着前所未有的科技颠覆。从物料追踪到库存管理,再到物流配送,RFID技术以其高效的数据采集和智能的自动化处理,彻底改变着传统供应链的运营方式。 RFID在物料追…

全国各城市-货物进出口总额和利用外资-外商直接投资额实际使用额(1999-2020年)

最新数据显示,全国各城市外商直接投资额实际使用额在过去一年中呈现了稳步增长的趋势。这一数据为研究者提供了对中国外商投资活动的全面了解,并对未来投资趋势和政策制定提供了重要参考。 首先,这一数据反映了中国各城市作为外商投资的热门目…