【数据结构】复杂度

🔥博客主页:小王又困了

📚系列专栏:数据结构

🌟人之为学,不日近则日退 

❤️感谢大家点赞👍收藏⭐评论✍️


目录

一、什么是数据结构

二、什么是算法

三、算法的效率

四、时间复杂度

4.1大O渐进表示法

4.2常见时间复杂度计算举例

4.3例题:消失的数字

五、空间复杂度 

5.1空间复杂度计算 

5.2例题:轮转数组


🗒️前言

在前面我们讲完了C语言的内容,从本期开始我们将进入数据结构的学习,本期介绍了数据结构的概念和算法分析的初步知识。

一、什么是数据结构

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

二、什么是算法

算法(Algorithm)是定义良好的计算过程,它取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果

三、算法的效率

我们会通过复杂度去衡量一个算法的好坏。算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

四、时间复杂度

时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

4.1大O渐进表示法

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,所以这里我们使用大O的渐进表示法。 

大O符号:是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1.用常数1取代运行时间中的所有加法常数。

2.在修改后的运行次数函数中,只保留最高阶项。

  3.如果最高阶项存的系数不为1,则去除这个项的系数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:                                                                                                                                   任意输入规模的最大运行次数(上界)
  • 平均情况:                                                                                                                                 任意输入规模的期望运行次数
  • 最好情况:                                                                                                                               任意输入规模的最小运行次数(下界)

说明:在实际中一般情况关注的是算法的最坏运行情况。

4.2常见时间复杂度计算举例

🚩冒泡排序:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

📒最好情况:O(N)

        最好情况就是数组本身有序,虽然它有序,但是计算机最初并不知道它是有序的,仍需要遍历一遍数组才能知道它是有序的,所以就好情况就是O(N)。

📒最坏情况:O(N^2)

        最坏情况是数组完全逆序,则第一趟需要交换N − 1 次,第二趟需要交换N − 2次…直到最后一趟只交换一次,把所有的交换次数加起来就得到了冒泡排序最坏情况下的时间复杂度,其实也就是一个等差数列求和,所以最会情况下的时间复杂度是O(N^2)

 🚩二分查找

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid - 1;elsereturn mid;}return -1;
}

📒最好形况:O(1)

        最好情况是第一次查找就找到目标值,此时时间复杂度就是O(1)。

📒最坏情况:O(log2N)
        二分查找每次可以排出一半的数据,就坏的情况就是排出到只剩下一个数据。当N/2/2/2/2……/2=1时,就找到了目标值。除去了几个2就是执行的次数,所以时间复杂度为O(log2N)。

O(N)和O(log2N)的对比:

N1000100W10亿
O(N)1000100W10亿
O(log2N)102030

由此我们看到O(log2N)相对O(N)在效率上有很大的提升,但二分查找有一个限制条件就是数组必须有序,所以在实际中二分查找应用并不多。

🚩递归阶乘

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if (0 == N)return 1;return Fac(N - 1) * N;
}

📒时间复杂度:O(N)

        Fac一共被递归调用了N+1次,且每次Fac中执行1次,总共执行N+1次,所以时间复杂度是O(N)。

🚩斐波那契数

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

 📒时间复杂度:O(2^N)

        斐波那契额数列,它的时间复杂度是等比数列求和,所以时间复杂度为O(2^N)。

4.3例题:消失的数字

💡思路一: 

        我们可以把0~N个数字全部加起来,减去数组中的元素,结果就是消失的数字。

时间复杂度为O(N)

int missingNumber(int* nums, int numsSize)
{int i=0;int ret=N*N/2;for(i=0;i<numsSize;i++){ret-=nums[i];}return ret;
}

💡思路二:

        我们可以使用异或,异或的条件是相同为0,相异为1。两个相同的数异或为0,0和任何数异或都为原数,所以我们将0~N与数组中的所有异或,得到的结果就是消失的数。

int missingNumber(int* nums, int numsSize)
{int m=0;int i=0;for(i=0;i<=numsSize;i++){m^=i;}for(i=0;i<numsSize;i++){m^=nums[i];}return m;
}

五、空间复杂度 

空间复杂度的概念:

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。 空间复杂度不是程序占用了多少bytes的空间,而算的是变量的个数。 空间复杂度计算规则也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

一般常见的空间复杂度都是O(1)或者O(N)(额外开辟数组)。

5.1空间复杂度计算 

🚩递归阶乘:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

📒空间复杂度:O(N)

        函数的每一次调用都会开辟一个栈帧,每个栈帧开常数个空间,开辟N+1个栈帧,空间复杂度就为O(N)。

 递归程序最大的问题就是深度太深,会有栈溢出的风险。

🚩 斐波那契数

long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

📒空间复杂度:O(N)

        空间是可以重复利用的,递归的调用是按一条线递归下去的,不会同时递归,当递归到最后一层返回时,创建的函数栈帧销毁,调用另一条仍可以使用这块空间,所以空间复杂度是O(N)。

5.2例题:轮转数组

 💡思路

  1. 逆置前n-k个
  2. 逆置后k个
  3. 整体逆置
void reverse(int* nums,int left,int right)
{int tmp=0;while(left<=j){tmp=nums[left];nums[left]=nums[right];nums[right]=tmp;left++;right--;         }
}void rotate(int* nums, int numsSize, int k)
{if(k==0){return nums;}reverse(nums,0,numsSize-1);reverse(nums,0,k%numsSize-1);reverse(nums,k%numsSize,numsSize-1);
}

本次的内容到这里就结束啦。希望大家阅读完可以有所收获,同时也感谢各位读者三连支持。文章有问题可以在评论区留言,博主一定认真认真修改,以后写出更好的文章。你们的支持就是博主最大的动力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/64033.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringSecurity环境搭建

AOP思想&#xff1a;面向切面编程 导入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation&quo…

springboot开发的悠点装饰后台管理系统java公司装修设计jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目描述 springboot开发的悠点装饰后台管理系统 系统有1权限&…

源码分析——HashMap(JDK1.8)源码+底层数据结构分析

文章目录 HashMap 简介底层数据结构分析JDK1.8之前JDK1.8之后 HashMap源码分析构造方法put方法get方法resize方法 HashMap常用方法测试 HashMap 简介 HashMap 主要用来存放键值对&#xff0c;它基于哈希表的Map接口实现&#xff0c;是常用的Java集合之一。 JDK1.8 之前 HashM…

数据可视化(八)堆叠图,双y轴,热力图

1.双y轴绘制 #双Y轴可视化数据分析图表 #add_subplot() dfpd.read_excel(mrbook.xlsx) x[i for i in range(1,7)] y1df[销量] y2df[rate] #用来正常显示负号 plt.rcParams[axes.unicode_minus]False figplt.figure() ax1fig.add_subplot(1,1,1)#一行一列&#xff0c;第一个区域…

395. 至少有 K 个重复字符的最长子串

395. 至少有 K 个重复字符的最长子串 C代码&#xff1a;滑动窗口 ---- 不是吧&#xff0c;阿sir&#xff0c;这也能滑&#xff1f; // 返回滑动窗口的长度 // 满足条件的种类数量的可能为 [1, 26], 所以需要遍历26中情况的窗口长度 // 当 区间内所有种类数量 满足要求的种类数…

MySQL函数

1. 字符串函数 -- concat(str1,str2) 字符串拼接 select concat(Hello ,World!);-- lower(str) 字符串转小写 select lower(concat(Hello ,World!));-- upper(str) 字符串转大写 select upper(concat(Hello ,World!));-- LPD(str1,n,str2) 填充字符串,从左边给str1填充str2字符…

消息队列(3) -封装数据库的操作

前言 上一篇博客我们写了, 关于交换机, 队列,绑定, 写入数据库的一些建库建表的操作 这一篇博客中,我们将建库建表操作,封装一下实现层一个类来供上层服务的调用 , 并在写完该类之后, 测试代码是否完整 实现封装 在写完上述的接口类 与 xml 后, 我们想要 创建一个类 ,来调用…

Spring MVC静态资源映射

Spring MVC静态资源映射 静态资源映射。使用容器的默认Servletlocationmapping&#xff1a;cache-periodorder Spring MVC需要对RESTful风格的URL提供支持&#xff0c;而真正的RESTful风格的URL不应该带有任何后缀&#xff0c;因此将Spring MVC拦截的URL改为“/”&#xff08;正…

tidevice+appium在windows系统实施iOS自动化

之前使用iOS手机做UI自动化都是在Mac电脑上进行的&#xff0c;但是比较麻烦&#xff0c;后来看到由阿里开源的tidevice工具可以实现在windows上启动WDA&#xff0c;就准备试一下&#xff0c;记录一下过程。 tidevice的具体介绍可以参考一下这篇文章&#xff1a;tidevice 开源&…

【单片机毕业设计】【hj-001】温度控制 | 恒温箱 | 保温箱 | 恒温孵化器 | 环境检测 | 温度检测

一、基本介绍 项目名&#xff1a; 基于单片机的温度控制系统设计 基于单片机的恒温箱系统设计 基于单片机的保温箱系统设计 基于单片机的恒温孵化器系统设计 基于单片机的环境检测系统设计 基于单片机的温度检测系统设计 项目编号&#xff1a;mcuclub-hj-001 单片机类型&…

2023年新手如何学剪辑视频 想学视频剪辑如何入门

随着短视频、vlog等媒体形式的兴起&#xff0c;视频剪辑已经成为了热门技能。甚至有人说&#xff0c;不会修图可以&#xff0c;但不能不会剪视频。实际上&#xff0c;随着各种智能软件的发展&#xff0c;视频剪辑已经变得越来越简单。接下来&#xff0c;一起来看看新手如何学剪…

Android高通8.1 Selinux问题

1、最近客户提了一个需求&#xff0c;说要在user版本上面切分辨率&#xff0c;默认屏幕分辨率是2.5 k 执行adb shell指令之后变成 4k 然后adb shell wm size可以查看 2、一开始我能想到就是在文件节点添加权限&#xff0c;这里不管是mtk还是qcom&#xff08;高通平台&#xff…