研究发现:提示中加入数百个示例显著提升大型语言模型的性能

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

近期研究显示,当大型语言模型(LLMs)在提示中直接接收到数百甚至数千个示例时,它们在多种任务上的表现显著提升。这项由谷歌、DeepMind等机构的研究人员进行的研究探讨了LLMs在直接通过提示学习大量示例时性能的提升情况,这种方法被称为多示例上下文内学习(Many-Shot In-Context Learning,ICL)。

上下文内学习(ICL)意味着示例直接在上下文(即提示)中给出,不需像微调那样调整模型参数。后者耗时更多,也更昂贵。以往,由于模型一次不能处理和生成大量文本,通常只给模型提供少数几个示例(单示例、少示例)。现在,随着“上下文窗口”(一种短期记忆)的扩大,可以在提示中直接提供给模型数百甚至数千个示例(多示例)。

在使用谷歌的Gemini 1.5 Pro语言模型进行的测试中,该模型可以处理多达一百万个令牌(约70万词)的上下文。结果显示,多示例提示在翻译、总结、规划和回答问题等任务上的表现显著优于少示例提示。

例如,在使用大约1000个翻译示例的情况下,Gemini 1.5甚至在库尔德语和泰米尔语这两种语言的翻译上超越了谷歌翻译,这是迄今为止LLMs与谷歌翻译之间报告的最大差距。在新闻摘要方面,该模型几乎能与专门的程序相媲美,但偶尔会出现如错误的数据和时间等虚构信息,这些信息并未出现在学习示例中。此外,当示例超过50个后,性能开始下降,研究人员尚无法解释此现象。

对于复杂的逻辑任务,如数学或科学问题,研究人员让模型自己创造解决方案并将其作为额外的学习示例,这种方法(“强化ICL”)比人工创造的解决方案更为可靠。

在一个仅给出问题而不给解决方案的实验中(“无监督ICL”),对于某些逻辑任务,这种方法仍然比几个完整的示例效果更好。然而,它通常无法达到“强化ICL”自生成解决方案的水平。研究还发现,模型通过示例“遗忘”了预训练中的错误,并且在给予足够多的示例后甚至能识别抽象的数学模式。然而,示例的给出顺序对模型产生了影响,使提示变得更加复杂。为什么性能有时在示例更多时反而下降,这仍是一个悬而未决的问题。未来的研究需要澄清这一点。

总之,这些结果显示,语言模型可以从提示中的许多示例中可靠地学习。这可能会在未来使针对特定任务的耗时训练变得不再必要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/643686.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿赵UE学习笔记——30、HUD简单介绍

阿赵UE学习笔记目录 大家好,我是阿赵。   继续学习虚幻引擎,这次来学习一下HUD的基础使用。 一、 什么是HUD HUD(Head-Up Display),也就是俗称的抬头显示。很多其他领域里面有用到这个术语,比如开车的朋友可能会接触过&#xf…

编译器的学习

常用的编译器: GCCVisual CClang(LLVM): Clang 可以被看作是建立在 LLVM 之上的一个项目, 实际上LLVM是clang的后端,clang作为前端前端生成LLVM IR,https://zhuanlan.zhihu.com/p/656699711MSVC &#xff…

(done) 什么是 SVD 奇异值分解?什么是 TruncatedSVD 截断奇异值分解?

来源:https://www.bilibili.com/video/BV16A411T7zX/?spm_id_from333.337.search-card.all.click&vd_source7a1a0bc74158c6993c7355c5490fc600 奇异值分解其实就是如下图,把矩阵 M 分解成一个正交方阵 U,乘以一个不规则奇异值矩阵 sigma…

Spring Boot入门(21):使用Spring Boot和Log4j2进行高效日志管理:配置详解

Spring Boot 整合 Log4j2 前言 Log4j2是Apache软件基金会下的一个日志框架,它是Log4j的升级版。与Log4j相比,它在性能和功能上有着极大的提升。Spring Boot本身已经默认集成了Logback作为日志框架,但如果需要使用Log4j2来替代Logback&#…

分享基于鸿蒙OpenHarmony的Unity团结引擎应用开发赛

该赛题旨在鼓励更多开发者基于OpenHarmony4.x版本,使用团结引擎创造出精彩的游戏与应用。本次大赛分为“创新游戏”与“创新3D 化应用”两大赛道,每赛道又分“大众组”与“高校组”,让不同背景的开发者同台竞技。无论你是游戏开发者&#xff…

8.4.3 使用3:配置单臂路由实现VLAN间路由

1、实验目的 通过本实验可以掌握: 路由器以太网接口上的子接口配置和调试方法。单臂路由实现 VLAN间路由的配置和调试方法。 2、实验拓扑 实验拓扑如下图所示。 3、实验步骤 (1)配置交换机S1 S1(config)#vlan 2 S1(config-vlan)#exit S…

LayuiMini使用时候初始化模板修改(下载源码)

忘记加了 下载 地址 : layui-mini: layuimini,后台admin前端模板,基于 layui 编写的最简洁、易用的后台框架模板。只需提供一个接口就直接初始化整个框架,无需复杂操作。 LayuiMini使用时候初始化模板官网给的是: layu…

【目标检测】YOLOv7 网络结构(与 YOLOv4,YOLOv5 对比)

YOLOv7 和 YOLOv4 Neck 与 Head 结构对比 其实 YOLOv7 的网络结构网上很多文章已经讲得很清除了,网络结构图也有非常多的版本可供选择,因为 YOLOv7 和 YOLOv4 是一个团队的作品,所以在网络结构方面, YOLOv7 和 YOLOv4 有很多相似…

调度问题变形的贪心算法分析与实现

调度问题变形的贪心算法分析与实现 一、问题背景与算法描述二、算法正确性证明三、算法实现与分析四、结论 一、问题背景与算法描述 带截止时间和惩罚的单位时间任务调度问题是一个典型的贪心算法应用场景。该问题的目标是最小化超过截止时间导致的惩罚总和。给定一组单位时间…

Swift-27-类的初始化与销毁

Swift的初始化是一个有大量规则的固定过程。初始化是设置类型实例的操作,包括给每个存储属性初始值,以及一些其他准备工作。完成这个过程后,实例就可以使用了。 简单来讲就是类的构造函数,基本语法如下: 注意&#xff…

CentOS7/RHEL7 root密码破解

我们知道root是CentOS7/RHEL7系统的管理员用户,一般情况下,我们是不会把其密码忘记的,如果万一忘记了,如果破解root密码呢,今天就为大家详细讲讲。 1.CentOS7/RHEL7 root密码破解 以VMware虚拟机上CentOS7系统为例 …

毕业撒花 流感服务小程序的设计与实现

目录 1.1 总体页面设计 1.1.1 用户首页 1.1.2 新闻页面 1.1.3 我的页面 1.1.5 管理员登陆页面 1.1.6 管理员首页 1.2 用户模块 1.2.1 体检预约功能 1.2.2 体检报告功能 1.2.4 流感数据可视化功能 1.2.5 知识科普功能 1.2.6 疾病判断功能 1.2.7 出示个人就诊码功能 …