人工智能时代的关键技术:深入探索向量数据库及其在AI中的应用

文章目录

    • 1. 理解向量数据库:二维模型示例
    • 2. 向量数据库中的数据存储与检索
    • 3. 向量数据库如何工作?
    • 4. 向量数据库如何知道哪些向量相似?

在人工智能技术日益成熟的当下,向量数据库作为处理和检索高维数据的关键工具,对于各种AI应用至关重要。本文将详细介绍向量数据库的工作原理、技术实现以及其在现代AI应用中的关键作用,同时通过实例展示如何有效实现和利用这种技术。

1. 理解向量数据库:二维模型示例

向量数据库的核心功能在于它能够处理和索引复杂的高维数据。为了简化这一概念,让我们通过一个基于衣服属性的二维模型来解释向量数据库如何工作。

在这个模型中,设想一个网格,它在一个维度上表示衣服的颜色(如棕色、黑色、白色),在另一个维度上表示衣服的大小(如小、中、大)。在这个网格上,每一个点都代表一件衣服,其在网格中的位置反映了这件衣服的颜色和大小属性。

在这里插入图片描述

例如:

  • 图片A对应一件中等大小的棕色衣服,位于网格的“中等-棕色”区域。
  • 图片B对应一件小号的黑色衣服,位于“小-黑色”区域。
  • 图片C是一件大号的白色衣服,位于“大-白色”区域。

虽然真实世界中的向量数据库会处理比这个例子更高维度的数据,但通过这个二维视角,我们可以更容易地理解它的基本工作原理。向量数据库利用这样的维度来快速定位和检索数据,从而高效地找到与用户查询相匹配的项。

2. 向量数据库中的数据存储与检索

向量数据库的强大功能在于其能够将复杂的数据对象转换成多维空间中的点,即向量嵌入。每个数据对象——无论是文本、图片还是音频——都可以被编码为一个包含多个数值的向量,这个向量捕捉了对象的关键特征。

在这里插入图片描述

想象一下在手机上听一首歌。这首歌曲通过音频模型被转换为一系列的音频向量嵌入,这些嵌入像是一串特殊的代码,它们不仅代表了歌曲的旋律、节奏和流派等音乐特征,而且在多维的向量空间中,相似歌曲的向量彼此更为接近。

在向量数据库中,这些音频向量嵌入的存储方式使得搜索变得极为高效。当查询一个与喜欢的曲目相似的歌曲时,向量数据库通过计算距离,快速定位那些在向量空间中与查询向量邻近的点,也就是那些特征相似的歌曲。

通过这种方式,向量数据库在维护数据的同时,也优化了搜索和检索过程,为用户提供快速且相关的结果。这使得向量数据库成为了人工智能和机器学习应用中不可或缺的组成部分,它可以广泛应用于推荐系统、搜索引擎和数据分析工具。

3. 向量数据库如何工作?

下面展示了一个处理用户查询并返回结果的过程,也包含了向量数据库的工作流程:

在这里插入图片描述

  1. 内容:代表了用户想要查询的信息源,比如文本、图片或音频。
  2. 查询:用户通过应用程序界面输入他们的搜索请求。
  3. 嵌入模型:这个模型负责将内容和查询转换成向量嵌入,这是一系列能代表原始信息的数字。
  4. 向量嵌入:查询和内容转换后的结果,是可以被计算机处理的数值形式,例如一组数字列表。
  5. 向量数据库:一个专门存储和处理向量嵌入的数据库。它将新的查询嵌入与数据库中已有的嵌入进行比较。
  6. 查询结果:根据向量嵌入之间的相似性度量,数据库找到并返回与用户查询最为相似或相关的结果。

这个过程反映了向量数据库在现代搜索和推荐系统中的实际应用,它能够处理和检索大量复杂的数据,并以高效的方式提供精确的结果。

4. 向量数据库如何知道哪些向量相似?

向量数据库通过计算向量之间的相似性度量来识别相似的向量。余弦相似度是一种常用的度量方法,它评估两个向量在方向上的相似程度,而不是它们在空间中的距离。

余弦相似度通过测量两个向量之间的夹角的余弦值来计算它们的相似性。它的值范围从-1(完全不相似)到1(完全相似)。当两个向量的方向完全一致时,余弦相似度为1;当两个向量完全相反时,余弦相似度为-1;当两者正交,即不相关时,余弦相似度为0。

在搜索引擎的上下文中,余弦相似度可以用来将用户的查询向量与数据库中存储的文档或对象的向量进行比较。通过计算查询向量与每个文档向量的余弦相似度,搜索引擎能够确定哪些文档与用户查询最为相关。

这个过程通常涉及以下步骤:

  1. 查询处理:用户输入的搜索词被转换成一个向量(查询向量)。
  2. 余弦相似度计算:查询向量与数据库中每个文档的向量进行比较,计算余弦相似度得分。
  3. 排序:文档根据它们的相似度得分进行排序。
  4. 结果展示:最相似的文档(即得分最高的文档)被展示给用户作为搜索结果。

确实,像谷歌这样的搜索引擎在确定搜索结果的相关性时会使用更加复杂的算法。除了余弦相似度,搜索引擎还会考虑页面权重(如PageRank)、用户个人化数据(如搜索历史和位置)、页面的实时性以及其他多种因素,以确保提供最准确、最相关的搜索结果。这些复杂的算法是搜索引擎优化(SEO)和搜索引擎营销(SEM)策略的关键组成部分。


推荐: 数据库
参考:Vector Databases: A Beginner’s Guide!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/643743.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用新版ESLint,搭配Prettier使用的配置方式

概述 ESLint重大更新(9.0.0版本)后,将不再支持非扁平化配置文件,并且移除了与Prettier冲突的规则,也就是说与Prettier搭配使用,不再需要使用插件“eslint-config-prettier”来处理冲突问题。 注:使用新版的前提条件是Node.js版本必须是18.18.0、20.9.0,或者是>=21.1…

鸿蒙官网学习3

鸿蒙官网学习3 每日小提示项目的模块类型跨设备预览调试阶段应用的替换方式有两种 打开老的demo工程报错UIAbility 每日小提示 项目的模块类型 moduleType分为三种,只有1,2的模块支持直接调试和运行 entryfeaturehar 跨设备预览 需要手动在config.j…

Tensorflow2.0笔记 - BatchNormalization

本笔记记录BN层相关的代码。关于BatchNormalization,可以自行百度,或参考这里: 一文读懂Batch Normalization - 知乎神经网络基础系列: 《深度学习中常见激活函数的原理和特点》《过拟合: dropout原理和在模型中的多种应用》深度…

代码随想录算法训练营DAY32|C++贪心算法Part.2|122.买卖股票的最佳时机II、55.跳跃游戏、45.跳跃游戏II

文章目录 122.买卖股票的最佳时机II思路CPP代码 55.跳跃游戏思路CPP代码 45.跳跃游戏II思路方法一代码改善 CPP代码 122.买卖股票的最佳时机II 力扣题目链接 文章讲解:122.买卖股票的最佳时机II 视频讲解: 状态:本题可以用动态规划&#xff0…

更易使用,OceanBase开发者工具 ODC 4.2.4 版本升级

亲爱的朋友们,大家好!我们的ODC(OceanBase Developer Center )再次迎来了重要的升级V 4.2.4,这次我们诚意满满,从五个方面为大家精心打造了一个更加易用、贴心,且功能更强的新版本,相…

基础SQL DQL语句

基础查询 select * from 表名; 查询所有字段 create table emp(id int comment 编号,workno varchar(10) comment 工号,name varchar(10) comment 姓名,gender char(1) comment 性别,age tinyint unsigned comment 年龄,idcard char(18) comment 身份证号,worka…

javascript(第三篇)原型、原型链、继承问题,使用 es5、es6实现继承,一网打尽所有面试题

没错这是一道【去哪儿】的面试题目,手写一个 es5 的继承,我又没有回答上来,很惭愧,我就只知道 es5 中可以使用原型链实现继承,但是代码一行也写不出来。 关于 js 的继承,是在面试中除了【 this 指针、命名提…

Golang基础1

基本类型 bool 整数:byte(相当于uint8), rune(相当于int32), int/uint ,int8/uint8 ,int16/uint16 ,int32/uint32 ,int64/uint64 浮点数: float32 ,float64, complex64 ,complex128 array(值类型)、slice、map、chan(引用类型…

Vitis HLS 学习笔记--对于启动时间间隔(II)的理解

目录 1. II的重要性 2. 案例分析 3. 总结 1. II的重要性 在Vitis HLS(High-Level Synthesis)中,启动时间间隔(II,Iteration Interval)是一个非常关键的概念,对于实现高性能的硬件加速器设计…

DS进阶:AVL树和红黑树

一、AVL树 1.1 AVL树的概念 二叉搜索树(BST)虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-…

【linux】chmod权限开放(整个文件夹)

文章目录 起因权限查看权限修改 失败权限修改成功 起因 想要共享conda环境给同事,发现同事没权限。 权限查看 ls #查看当前目录 ls -l # 查看当前目录的东西和权限正常情况下是显示 三个rwx分别属于user,group,others 前面第一个rwx 是针…

刷题之Leetcode242题(超级详细)

242.有效的字母异位词 力扣题目链接(opens new window)https://leetcode.cn/problems/valid-anagram/ 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。 示例 1: 输入: s "anagram", t "nagaram" 输出: true 示例 2…