【智能算法】回溯搜索算法(BSA)原理及实现

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2013年,P Civicioglu等人受到当前种群与历史种群之间的差分向量的引导启发,提出了回溯搜索算法(Backtracking Search Algorithm, BSA)。
在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

BSA通过当前种群与历史种群之间的差分向量的引导来执行搜索任务,主要分为三部分:筛选-I、交叉和变异和筛选-II

2.2算法过程

筛选-I

更新历史种群 Xoldt ,分为以下两步:
X o l d t = { X t , i f φ > θ X o l d t , o t h e r w i s e (1) \boldsymbol{X}_{\mathrm{old}}^t=\begin{cases}\boldsymbol{X}^t,&\mathrm{if~}\varphi{>}\theta\\\boldsymbol{X}_{\mathrm{old}}^t,&\mathrm{otherwise}&\end{cases}\tag{1} Xoldt={Xt,Xoldt,if φ>θotherwise(1)
其中, φ , θ \varphi,\theta φ,θ为随机数。接下来:
X o l d t = p e r m u t i n g ( X o l d t ) (2) \boldsymbol{X}_\mathrm{old}^t\mathrm{=permuting}{\left(\boldsymbol{X}_\mathrm{old}^t\right)}\tag{2} Xoldt=permuting(Xoldt)(2)
permuting 是一个随机改组函数,使得历史种群 Xold t 中包含的 N 个个体随机排序。

交叉和变异

变异操作由历史种群 Xold t 引导:
z i t = x i t + F × ( x o l d , i t − x i t ) (3) \boldsymbol{z}_i^t=\boldsymbol{x}_i^t+F\times\left(\boldsymbol{x}_{\mathrm{old},i}^t-\boldsymbol{x}_i^t\right)\tag{3} zit=xit+F×(xold,itxit)(3)
F 为缩放因子,表述为:
F = 3 × ξ (4) F{=}3{\times}\xi \tag{4} F=3×ξ(4)
交叉操作是由一个 N 行 D 列的二进制矩阵 M 来引导:
x i , j t + 1 = { x i , j t , i f M i , j = 1 z i , j t , i f M i , j = 0 (5) x_{i,j}^{t+1}=\begin{cases}x_{i,j}^t,\mathrm{if~}\boldsymbol{M}_{i,j}=1\\z_{i,j}^t,\mathrm{if~}\boldsymbol{M}_{i,j}=0\end{cases}\tag{5} xi,jt+1={xi,jt,if Mi,j=1zi,jt,if Mi,j=0(5)

筛选-II

为了加快收敛过程,执行:
x i t + 1 = { x i t , i f f ( x i t ) < f ( x i t + 1 ) x i t + 1 , o t h e r w i s e (6) \boldsymbol{x}_i^{t+1}=\begin{cases}\boldsymbol{x}_i^t,&\mathrm{if~}f(\boldsymbol{x}_i^t)<f(\boldsymbol{x}_i^{t+1})\\\boldsymbol{x}_i^{t+1},&\mathrm{otherwise}&\end{cases}\tag{6} xit+1={xit,xit+1,if f(xit)<f(xit+1)otherwise(6)

伪代码

在这里插入图片描述

3.结果展示

作者提供了拟合圆、图像聚类两个案例:

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Civicioglu P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and computation, 2013, 219(15): 8121-8144.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/650630.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【产品经理修炼之道】- 从需求到功能的转化过程

产品经理的最大作用是将需求转化为产品或者功能&#xff0c;从需求到功能&#xff0c;会经历哪些过程&#xff1f;本文总结了从需求到功能的转化过程&#xff0c;希望对你进一步了解有所帮助。 “大部分的产品经理特别是数字化产品经理其核心价值就是如何去解决如何把需求转化为…

UE Actor生命周期

目录 生命周期流程图Actor生成方式Actor生命周期终点垃圾回收高级垃圾回收小结 生命周期流程图 Actor生命周期如上图所示&#xff0c;主要包括以下&#xff1a; 在关卡中实例化或生成Actor&#xff0c;包括如何初始化Actor。 将Actor标识为PendingKill&#xff0c;然后通过垃圾…

淘宝图片搜索API接口:技术原理、使用方法与最佳实践指南

淘宝图片搜索API接口技术详解 在数字化时代&#xff0c;图片搜索已经成为一种高效、直观的信息检索方式。淘宝作为国内最大的电商平台&#xff0c;其图片搜索API接口对于提高购物体验和商家运营效率具有重要意义。本文将详细解析淘宝图片搜索API接口的技术原理、使用方法和注意…

ROS python实现乌龟跟随

产生两只乌龟&#xff0c;中间的乌龟(A) 和 左下乌龟(B), B 会自动运行至A的位置&#xff0c;并且键盘控制时&#xff0c;只是控制 A 的运动&#xff0c;但是 B 可以跟随 A 运行 乌龟跟随实现的核心&#xff0c;是乌龟A和B都要发布相对世界坐标系的坐标信息&#xff0c;然后&am…

低代码信创开发核心技术(四)动态元数据系统设计

一、概述 在当今快速发展的信息技术领域&#xff0c;动态元数据系统扮演着至关重要的角色。它不仅能够提供数据的描述信息&#xff0c;还能动态地适应业务需求的变化&#xff0c;从而提高系统的灵活性和可扩展性。构建一个动态元数据系统意味着我们可以在不重启系统的情况下&a…

janus模块介绍-SIP Gateway

模块启动 默认的SIP GateWay也是https协议&#xff0c;端口为8088或者8089 如果需要在自己搭建的测试服务上测试SIP GateWay模块&#xff0c;则也需要修改为wss 具体改动如下: 找到/opt/janus/share/janus/demos/siptest.js var server "wss://" window.location…

python监听html click教程

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Python实现监听HTML点击事件 在Web开发中&#xff0c;经常需要在用户与页面交互时执行一些…

如何安装sbt(sbt在ubuntu上的安装与配置)(有详细安装网站和图解)

sbt下载官网 选择对应的版本和安装程序 Download | sbt (scala-sbt.org) 安装 解压 将sbt-1.9.0.tgz上传到xshell&#xff0c;并解压 解压&#xff1a; tar -zxvf sbt-1.9.0.tgz 配置 1、在/home/hadoop/sbt中创建sbt脚本 /home/hadoop/sbt 注意要改成自己的地址 cd …

原生微信小程序中案例--仿boss区域树选择列多选功能

1. 需求描述&#xff1a; 区域三级列表&#xff0c; 有添加&#xff0c;编辑&#xff0c;删除功能。 选择父级分类&#xff0c;其下子类全部选中&#xff0c;当前分类后加标志显示全字样取消选中子类&#xff0c;其父类分类后标志显示选中数量若子类全部选中&#xff0c;除当…

MIGO行项目屏幕增强

MIGO行项目屏幕增强 一、增强描述 由于在事务码MIGO中存在的字段中没有能够满足客户需求的字段&#xff0c;所以需要在事务码MIGO的屏幕中添加一个新的页签用来保存物料凭证中行项目增加的字段。 通过查找BADI的程序ZDEMO_BADI,输入参数MIGO后&#xff0c;得到对应BADI为MB_M…

Trello与Notion的开源替代项目管理利器Focalboard本地安装与远程访问

本篇文章将介绍如何使用 Docker 本地部署 Focalboard 项目管理工具&#xff0c;并且结合 cpolar 内网穿透进行公网访问&#xff0c;实现团队协作&#xff0c;提高工作效率&#xff01; Focalboard 是一个开源项目管理工具&#xff0c;可以替代 Asana、Trello 和 Notion 等软件…

JavaScript-Vue入门

本文主要测分享Vue的一些基础 Vue简介 Vue.js 是一个构建数据驱动的 web 界面的渐进式框架。它的主要目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。 下是一些 Vue 的主要特点和概念&#xff1a; 1. 响应式数据绑定&#xff1a;Vue 使用基于 HTML 的模板语法…