数据结构-二叉树-堆(二)

一、建堆的时间复杂度问题

1、除了向上调整建堆,我们还可以向下调整建堆。不能在根上直接开始向下调整。这里的条件就是左右子树必须都是大堆或者小堆。我们可以倒着往前走,可以从最后一个叶子开始调整。但是从叶子开始调整没有意义。所以我们可以从倒数的第一个的非叶子开始调整。也就是最后一个叶子的父亲节点开始向下调整建堆。一层一层向上进行向下调整建堆,把大的数字往上调小的数字往下沉。那么问题来了怎么找到最后一个叶子的父亲节点。

我们先可以求出最后一个孩子的下标然后应用公式 parent = (child-1)/ 2 算出最后一个孩子的父亲节点的下标。

void HeapSort(int* a,int n)
{//首先建立大堆/*for (int i = 1; i < n; i++){UpAdjust(a, i);}*///向下调整建堆的效率要比向上调整建堆的效率要高for (int i = (n - 1 - 1) / 2; i >= 0; i--){DownAdjust(a, i, n);}//交换堆头和堆尾的数字选出最大的数字放到堆尾//然后向下调整int end = n - 1;while (end > 0){Swap(&a[end], &a[0]);DownAdjust(a, 0, end);end--;}
}

2、向下调整和向上调整建堆的时间复杂度

向下调整:倒数第二层有2^(h-2) 个节点

建堆的调整的次数

错位相减法算出时间复杂度

每层节点个数 × 这一层最坏向下调整多少次

最后的结果为:

所以时间复杂度为O(N)  T(N) = N - h。

向上调整:

再次使用上面的错位相减法

所以时间复杂度为O(NlogN)。

因为向下调整的过程中节点多的调整的次数少,节点少的调整的次数多。向上调整的过程中节点少的调整的次数少,节点多的调整的次数多

排序调堆的时间复杂度也是O(NlogN)。

TOPK 问题

1、建N个数的大堆,再Pop k次就可以了。

2、加入N很大呢?N是100亿呢? K == 50

      1G大约十亿字节。所以是40G左右

内存中存不下,数据是在磁盘文件中。

我们可以用100亿个数中的K个数建立一个小堆。遍历剩下的数据,如果这个数据比堆顶的数据大,就替代它进堆(向下调整)最后这个小堆的数据就是最大的前K个。

void HeapTopK(int* a, int n, int k)
{//首先向下调整建堆int* topk = (int*)malloc(sizeof(int) * k);//从a数组里读for (int i = 0; i < k; i++){topk[i] = a[i];}//建立小堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){DownAdjust(topk, i, k);}//遍历剩下的数如果大于堆顶的数据我们就让它进堆并向下调整for (int i = k + 1; i < n; i++){if (a[i]  > topk[0]){topk[0] = a[i];DownAdjust(topk, 0, k);}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/651231.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ClickHouse 高可用之副本

文章目录 ClickHouse 副本支持副本的引擎配置高可用副本副本应用1.副本表概述2.创建副本表3.写入模拟数据4.副本验证 扩展 —— 在 Zookeeper 中查看副本表信息 ClickHouse 副本 ClickHouse 通过副本机制&#xff0c;可以将数据拷贝存储在不同的节点上。这样&#xff0c;如果一…

C语言数据类型的介绍,类型的基本归类,整型在内存中的存储,原码、反码、补码,大小端等介绍

文章目录 前言一、数据类型的介绍类型的意义 1. 类型的基本归类&#xff08;1&#xff09;. 整型家族&#xff08;2&#xff09;. 浮点数家族&#xff08;3&#xff09;. 构造类型&#xff08;4&#xff09;. 指针类型&#xff08;5&#xff09;. 空类型 二、整型在内存中的存储…

【Python系列】受保护属性

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

了解时间复杂度和空间复杂度

在学习数据结构前&#xff0c;我们需要了解时间复杂度和空间复杂度的概念&#xff0c;这能够帮助我们了解数据结构。 算法效率分为时间效率和空间效率 时间复杂度 一个算法的复杂度与其执行的次数成正比。算法中执行基础操作的次数&#xff0c;为算法的时间复杂度。 我们采…

【网络安全】安全事件管理处置 — 安全事件处置思路指导

专栏文章索引&#xff1a;网络安全 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 一、处理DDOS事件 1.准备工作 2.预防工作 3.检测与分析 4.限制、消除 5.证据收集 二、处理恶意代码事件 1.准备 2.预防 3.检测与分析 4.限制 5.证据收集 6.消除与恢复 …

路由器使用docker安装mysql和redis服务

路由器使用docker安装mysql和redis服务 1.先在路由器中开启docker功能 &#xff08;需要u盘 或者 移动硬盘&#xff09; 2. docker 管理地址 :http://192.168.0.1:11180/#/ 3. 拉取镜像 4. mysql容器参数设置 MYSQL_ROOT_PASSWORD 5. redis 容器设置 开发经常需要用到 &…

Check the `candidate.safety_ratings` to see if the respoe was blocked.

ValueError&#xff1a;“response.text”快速访问器仅适用于简单&#xff08;单“部分”&#xff09;文本响应。此响应不是简单的文本。请改用“result.parts”访问器或完整的“result.candidates[index].content.parts”查找。期号 #170 谷歌-双子座/生成-人工智能-python Gi…

四:物联网ARM开发

一&#xff1a;ARM体系结构概述 1&#xff1a;控制外设led灯还有一些按键这些就要用到gpio&#xff0c;采集传感器的数据需要adc进行转化数据格式&#xff0c;特殊的外设和传感器是通过特殊的协议接口去进行连接的比如一些轴传感器和主控器的连接是通过spi&#xff0c;IIC 控制…

【优秀AI项目】每日跟踪 OpenVoice ,AI快站,OpenVoice

持续更新好玩的开源AI项目或AI商业应用体验 一起来玩转AI&#xff01;&#xff01; 1 huggingface 国内镜像站&#xff1a;AI 快站 HUggingface被墙了&#xff0c;emmmmm 所以我之前玩模型的一大感觉就是 下载什么模型之类的太难受了&#xff01;服了 看到一个镜像站——…

Rabbitmq安装延迟插件rabbitmq_delayed_message_exchange失败

Docker里的Rabbitmq容器安装延迟插件rabbitmq_delayed_message_exchange失败 一启动插件Rabbitmq容器直接停止运行了 rabbitmq-plugins enable rabbitmq_delayed_message_exchange排除了版本问题和端口问题等&#xff0c;发现是虚拟机运行内存不够&#xff0c;增加虚拟机运行内…

Appium 并行测试多个设备的方法

一、前置说明 在自动化测试中&#xff0c;经常需要验证多台设备的兼容性&#xff0c;Appium可以用同一套测试运例并行测试多个设备&#xff0c;以达到验证兼容性的目的。 解决思路&#xff1a; 1. 查找已连接的所有设备&#xff1b; 2. 为每台设备启动相应的Appium Server&…

7天入门Android开发之第1天——初识Android

一、Android系统 1.Linux内核层&#xff1a; 这是安卓系统的底层&#xff0c;它提供了基本的系统功能&#xff0c;如内存管理、进程管理、驱动程序模型等。安卓系统构建在Linux内核之上&#xff0c;借助于Linux的稳定性和安全性。 2.系统运行库层&#xff1a; 这一层包括了安卓…