百日筑基篇——python爬虫学习(一)

百日筑基篇——python爬虫学习(一)

文章目录

  • 前言
  • 一、python爬虫介绍
  • 二、URL管理器
  • 三、所需基础模块的介绍
    • 1. requests
    • 2. BeautifulSoup
      • 1. HTML介绍
      • 2. 网页解析器
  • 四、实操
    • 1. 代码展示
    • 2. 代码解释
      • 1. 将大文件划分为小的文件
      • 2. 获得结果页面的url
      • 3. 获取结果页面,提取出所需信息
      • 4. 文件合并操作
  • 总结


前言

随着学习的深入,有关从各种不同的数据库中以及互联网上的海量信息,如何有选择性的爬取我们所需的数据以方便我们的数据分析工作,爬虫的学习是必要的。


一、python爬虫介绍

Python爬虫是指使用Python编程语言编写的程序,通过模拟浏览器行为从网页中提取数据的过程

主要用途包括:

  1. 数据采集:通过爬虫可以从互联网上收集大量的数据,如新闻、论坛帖子、商品信息等。

  2. 数据分析:爬虫可以获取特定网站或多个网站的数据,进行统计和分析。

  3. 自动化测试:爬虫可以模拟用户行为,自动化地访问网站,并检查网站的功能、性能等。

  4. 内容聚合:通过爬虫可以自动化地从多个网站上获取信息,并将其聚合成为一个平台,方便用户浏览。

二、URL管理器

是指对爬取URL进行管理,防止重复和循环爬取,方便新增URL和取出URL。

class UrlManager():"""url管理器"""def __init__(self):self.new_urls = set()self.old_urls = set()def add_newurl(self,url):if url is None or len(url) == 0:returnif url in self.new_urls or url in self.old_urls:returnself.new_urls.add(url)def add_newurls(self,urls):if urls is None or len(urls) == 0:returnfor url in urls:self.add_newurl(url)def get_url(self):if self.has_newurl():url = self.new_urls.pop()self.old_urls.add(url)return urlelse:return Nonedef has_newurl(self):return len(self.new_urls) > 0

该类中创建了两个集合:new_urls和 old_urls ,分别表示新增url和已爬取完的url的存储集合。
定义了四个方法,

  1. add_newurl(self, url): 添加新的URL到new_urls集合中。如果URL为空或已经存在于new_urls或old_urls中,则不添加。
  2. add_newurls(self, urls): 批量添加URL到new_urls集合中。如果URL为空,则不添加。
  3. get_url(self): 从new_urls中获取一个未爬取的URL,将其移动到old_urls集合中,并返回该URL。如果new_urls为空,则返回None。
  4. has_newurl(self): 判断是否还有未爬取的URL。返回new_urls集合的长度是否大于0。

三、所需基础模块的介绍

1. requests

用于发送HTTP请求,并获取网页内容。

import requests
requests.post(url=,params=,data=,headers=,timeout=,verify=,allow_redirects=,cookies=)
#里面的参数依次代表请求的URL、查询参数、请求数据、请求头、超时时间、SSL证书验证、重定向处理和Cookies。url = "https://wolfpsort.hgc.jp/results/pLAcbca22a5a0ccf7d913a9fc0fb140c3f4.html"r = requests.post(url)
#查看状态码,200为请求成功
print(r.status_code)#查看当前编码,以及改变编码
print(r.encoding)
r.encoding = "utf-8"
print(r.encoding)#查看返回的网页内容
print(r.text)#查看返回的http的请求头
print(r.headers)#查看实际返回的URL
print(r.url)#以字节的方式返回内容
print(r.content)#查看服务端写入本地的cookies数据
print(r.cookies)

2. BeautifulSoup

用于解析HTML或XML等文档,提取所需的数据。

1. HTML介绍

HTML指的是超文本标记语言,一种用于创建网页结构的标记语言。它由一系列的元素(标签)组成,通过标签来描述网页中的内容和结构。

HTML标签:
是由< >包围的关键词,标签通常成对出现,且标签对中的第一个标签是开始标签,第二个则是结束标签,如下图所示:
请添加图片描述

在HTML语言中,标签中一般伴随着属性,比如:”id、class、herf等"

在这里插入图片描述

2. 网页解析器

导入 BeautifulSoup 模块
解析的一般步骤是:

  1. 得到HTML网页的文本
  2. 创建BeautifulSoup对象
  3. 搜索节点 (使用find_all或 find,前者返回满足条件的所有节点,后者返回第一个)
  4. 访问节点 (名称、属性、文字等)

示例代码如下:

base_url = "https://wolfpsort.hgc.jp/"from bs4 import BeautifulSoupwith open("D:\python\PycharmProjects\pythonProject1\pachou\linshi.html", "r", encoding="utf-8") as f:html_doc = f.read()soup = BeautifulSoup(html_doc,  # HTML文档字符串"html.parser",  # 解析器
)#可以分区
div_node = soup.find("div",id ="content")
links= div_node.find_all("a")# links = soup.find_all("a")
for link in links:print(link.name,base_url+link["href"],link.get_text())imgs = soup.find_all("img")
for img in imgs:print(base_url+img["src"])

请添加图片描述
这是一个基于wolfpsort网页的页面内容的爬取,根据该网页的HTML文本,可以通过标签以及属性的设置,来获得我们所需的指定的节点,再获取节点中的内容,如"herf"等

四、实操

1. 代码展示

import time
from selenium import webdriver
from selenium.webdriver.common.by import By
import requests
import os
import pandas as pddef split_gene_file(source_file, output_folder, genes_per_file):df = pd.read_csv(source_file, sep='\t')num_files = len(df) // genes_per_file + 1os.makedirs(output_folder, exist_ok=True)for i in range(num_files):start = i * genes_per_fileend = start + genes_per_filedf_subset = df.iloc[start:end]output_file = f"{output_folder}/gene_file_{i + 1}.csv"df_subset.to_csv(output_file, index=False)split_gene_file("D:\yuceji\Lindera_aggregata.gene.pep", "gene1", 3100)files = os.listdir("D:\python\PycharmProjects\pythonProject1\pachou\gene1")result_urls = []for i in range(0, 4):    #可自行设置所需文件数# 设置WebDriver路径,启动浏览器driver = webdriver.Edge()# 打开网页url = "https://wolfpsort.hgc.jp/"driver.get(url)time.sleep(5)wuzhong_type = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[1]/td[1]/p[1]/input[2]')wuzhong_type.click()wenjian_type = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[1]/td[1]/p[2]/input[2]')wenjian_type.click()input_element = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[1]/td[1]/p[3]/input')input_element.send_keys(f"D:\python\PycharmProjects\pythonProject1\pachou\gene1\gene_file_{i + 1}.csv")time.sleep(10)# 提交表单submit_button = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[2]/td/p/input[1]')submit_button.click()time.sleep(30)with open("result_urls","a",encoding="utf-8") as f:# 获取结果页面的URLresult_url = driver.current_urlf.write(result_url+ "\n")# 输出结果页面的URLprint(result_url)result_urls.append(result_url)# 关闭浏览器driver.quit()for i in range(len(result_urls)):r = requests.get(result_urls[i])print(r.status_code)text = r.textlines = text.split("<BR>")AA_ID_list = []yaxibao_list = []for line in lines:if "details" in line:AA_ID = line.split("<A")[0].strip().split()[-1]yaxibao = line.split("details")[1].strip().split()[1][:-1]AA_ID_list.append(AA_ID)yaxibao_list.append(yaxibao)with open(fr"D:\python\PycharmProjects\pythonProject1\pachou\result_dir\yaxibao{i}.csv", "w", encoding="utf-8") as f:f.write("AA_ID, yaxibao\n")  # 写入列名for j in range(len(AA_ID_list)):f.write(f"{AA_ID_list[j]}, {yaxibao_list[j]}\n")print(result_urls)# 再将所有的结果文件合并为一个大文件
result_csv = r"D:\python\PycharmProjects\pythonProject1\pachou\result_dir"
# 获取结果文件列表
result_files = os.listdir(result_csv)[:-1]
print(result_files)
# 创建一个空的DataFrame用于存储合并后的结果
merged_data = pd.DataFrame()
# 遍历每个结果文件
for file in result_files:# 读取结果文件df = pd.read_csv(result_csv + "\\" + file)#print(df)# 将结果文件的数据添加到合并后的DataFrame中merged_data = pd.concat([merged_data, df])
#print(merged_data)
# 保存合并后的结果到一个大文件
merged_data.to_csv("merged_results.csv", index=False)

我运行了这个代码,遍历前面四个文件,发现都很好的得到了结果页面的URL。说明这个代码是可行的。

请添加图片描述

2. 代码解释

这个代码差不多可以分为四个部分:

  1. 将大文件划分为小的文件
  2. 使用selenium库进行模拟用户行为,以获得结果页面的url
  3. 使用requests模块,通过上一步获得的url,发送请求,获取结果页面,并提取出所需信息
  4. 文件合并操作,使用pandas库中的concat方法,将前面得到的众多小文件的结果整合到一个大文件中。

1. 将大文件划分为小的文件

请添加图片描述

定义一个split_gene_file() 函数
先读取源文件source_file,将其转换为一个DataFrame对象。
再通过设置希望每个文件中的AA序列数(genes_per_file),计算出生成的小文件数(num_files), 并且生成一个文件夹用来放置得到的小文件。
然后,使用一个循环来迭代每个小文件的索引。循环中的每一次迭代都会计算起始索引start和结束索引end,并使用这些索引从原始DataFrame中选择相应的记录。
最后使用.iloc方法提取选择的子集,并保存为csv文件

2. 获得结果页面的url

在这里插入图片描述

这是基于python的selenium库,
Selenium是一个用于Web自动化的工具,可以用于模拟用户在网页浏览器上的行为,包括点击、输入、提交表单等操作。

其中最主要的步骤还是查看官网页面的源代码,通过HTML文本的标签获取元素的定位。
例如:
我要查看”Please select an organism type:" ,可以右键单击,然后点击检查
在这里插入图片描述
得到有关信息:
在这里插入图片描述
比如我在”Please select an organism type:“框中想选择"Plant”,那么我只要选择上图红框中表示输入是"plant"的框就行,然后再右键选择复制 “Xpath”
之后再将复制的Xpath粘贴到函数中,充当参数,如下所示:

 wuzhong_type = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[1]/td[1]/p[1]/input[2]')

因为在这个定位元素函数中,我第一个参数填的是“By.XPATH”,故后面那个参数就便是元素的“Xpath”。

3. 获取结果页面,提取出所需信息

请添加图片描述

对前面得到的URL列表(result_urls)进行循环遍历,并将得到的结果保存于指定文件中

4. 文件合并操作

请添加图片描述

前面得到的结果文件是通过循环得到的,故会是众多小文件。若是欲将所有的结果信息合并于一个大文件中,可以使用pandas库中的concat方法,来合并文件,最后将循环完毕后的合并结果,保存为一个csv文件。


总结

本章主要简述了python爬虫的有关信息,并且进行了一个实操(这个爬虫是基于WoLF PSORT官网,爬取亚细胞定位结果的数据)。更多有关蛋白质亚细胞定位的信息,请看

亚细胞定位

零落成泥碾作尘,只有香如故。

–2023-8-13 筑基篇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/65716.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】买卖股票的最佳时机含冷冻期

买卖股票的最佳时机含冷冻期 题目描述算法分析程序设计 链接: 买卖股票的最佳时机含冷冻期 题目描述 算法分析 程序设计 class Solution { public:int maxProfit(vector<int>& prices) {int n prices.size();//天数vector<vector<int>> dp(n,vector&l…

用ChatGPT和六顶帽思考法帮助自己更好地决策和解决问题

当我们在解决复杂问题时&#xff0c;我们常常陷入单一视角的状态。创造性思维领域的先驱爱德华德博诺&#xff0c;提出了六顶帽思考法[1]&#xff0c;这意味着我们可以从六个不同的视角来思考一个问题&#xff0c;以实现高水平决策和解决问题。 每一顶“帽子”代表不同的视角。…

Pycharm 双击启动失败?

事故 双击 Pycharm 后&#xff0c;出现加载工程&#xff0c;我不想加载这个工程&#xff0c;就点击了弹出的 cancle 取消按钮。然后再到桌面双击 Pycharm 却发现无法启动了。哪怕以管理员权限运行也没用&#xff0c;就是不出界面。 原因未知 CtrlshiftESC 打开后台&#xff…

Js小数运算精度缺失的解决方法

项目场景&#xff1a; 提示&#xff1a;项目需求截图&#xff1a; 问题描述 众所周知Js做运算时0.10.2不等于0.3,目前项目需要计算关于金额的选项&#xff0c;涉及到金额保留后两位。保单欠款是根据用户输入的保单应收和保单欠款自动计算的。 原因分析&#xff1a; 产生浮点数…

置信域策略优化Trust Region Policy Optimization (TRPO)

1. 置信域方法(Trust Region Methods) [1]将置信域方法用到强化学习中&#xff0c;并取到了非常好的结果. 1.1 优化问题 1.2 置信域 1.3 置信域方法的过程 References [1] Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization[C]//International conf…

手势识别rtos小车(2)----蓝牙通信

在pycharm下面安装pybluez库 本人&#xff1a;win11python3.8pybluez2 第一步&#xff0c;直接在pycharm终端运行 pip install pybluez 一般都会直接报错 第二步&#xff0c;下载安装win11的SDK文件&#xff0c;Windows SDK - Windows 应用开发 | Microsoft Developer 第三步…

IT运维:使用数据分析平台监控PowerStore存储

概述 存储在企业中一直承担着重要的角色&#xff0c;保证数据的安全性更是重中之重。存储的运行是否正常&#xff1f;我们的数据是否安全&#xff1f;存储管理人员的操作是否规范&#xff1f;这些都是企业需要关注的问题。那么该如何确保这些问题能够有效的解决&#xff1f;我们…

Maven进阶1 -- 分模块开发、依赖管理、聚合与继承、属性、版本管理、多环境开发、跳过测试

目录 1.分模块开发 将原始模块按照功能拆分成若干个子模块&#xff0c;方便模块间的相互调用&#xff0c;接口共享。 案例&#xff1a;拆分一下这个SSM整合案例 ①创建maven模块 demo项目下的pom.xml文件&#xff08;主要看一下依赖&#xff09; <dependencies><!…

《雷达像智能识别对抗研究进展》阅读记录

&#xff08;1&#xff09;引言 ​ 神经网络通常存在鲁棒性缺陷&#xff0c;易受到对抗攻击的威胁。攻击者可以隐蔽的诱导雷达智能目标识别做出错误预测&#xff0c;如&#xff1a; ​ a图是自行车&#xff0c;加上对抗扰动后神经网络就会将其识别为挖掘机。 &#xff08;2&a…

Linux 文件编辑命令

一、三种模式介绍 命令模式 插入模式(编辑模式) 末行模式 二、模式切换 1.命令模式切换到插入模式 &#xff08;1&#xff09; a //进入到当前光标后开始编辑 &#xff08;2&#xff09; A //进入到当前光标所在行的行末开始编辑 &#xff08;3&#xff09;i //进入当前光…

【Java】一只小菜坤的编程题之旅【3】

文章目录 1丶判定是否互为字符重排2、杨辉三角3丶某公司的1个面试题&#xff08;字符串包含问题&#xff09; 1丶判定是否互为字符重排 这个题我们用一个非常简单的思想就能实现&#xff0c;我们先将字符串转换为字符数组&#xff0c;然后对字符数组进行排序&#xff0c;然后再…

数据结构:栈的实现(C实现)

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》 文章目录 前言一、栈的实现思路1. 结构的定义2. 初始化栈(StackInit)3. 入栈(StackPush)4. 出栈(StackPop)5. 获取栈顶元素(StackTop)6. 检查栈是否为空(StackEmpty)7. 销毁栈(StackDestroy) 二、…