堆叠
- 一、简介
- 二、堆叠的优势
- 1、提高可靠性
- 2、简化组网
- 3、简化管理
- 4、强大的网络拓展能力
- 三、堆叠的方式
- 1、堆叠卡堆叠
- 2、业务口堆叠
- 四、堆叠的原理
- 1、角色
- 2、单机堆叠
- 3、堆叠ID
- 4、堆叠的优先级
- 5、堆叠的建立过程
- 五、堆叠的配置
一、简介
堆叠技术 — 可以将多台真是得物理设备逻辑上抽象成一台。
思科 — VPC
华为 — iStack和CSS
华三 — IRF
锐捷 — VSU
iStack和CSS的区别:
CSS — 集群 — 仅支持将两台支持集群的交换机逻辑上整合成为一个设备。
iStack — 堆叠 — 可以将两台支持堆叠的交换机逻辑上整合成为一台。
集群和堆叠的主要区别 — 1、数量;2、设备
二、堆叠的优势
1、提高可靠性
堆叠实际上实现的是一个1:N的备份,任意一台设备出现故障,堆营系统中剩余的N台设备都相当于是备份。
2、简化组网
因为多台设备逻辑上被抽象成为了一台设备,且可以实现跨设备的链路聚合,极大的简化了组网。
3、简化管理
因为堆叠之后,多台交换机相当于变成了一台交换机,所以,我们可以通过任意一台交换机登录到堆叠系统中,并对整个堆叠系统进行统一的管理。
4、强大的网络拓展能力
堆叠系统可以通过增加堆叠系统中的成员设备,从而达到增加端口数量,提高带宽,提升整个对得系的处理能力。
三、堆叠的方式
参与堆叠的设备首先需要保证直连。
根据中间链接介质不同,可以将堆叠方式分为两种
1、堆叠卡堆叠
集成光纤线
注意:堆叠卡中有两个堆叠口,一个1口,一个2口。在链接成为堆叠系统时,一定注意,需要使用本端设备的1口去连接对端设备的2口,实现交叉互连。
2、业务口堆叠
逻辑堆叠端口 — Stack-port — 一种虚拟接口 — 最多也只能创建两个。也需要遵循交叉互联的原则。
物理成员端口— 逻辑口只是定义了功能,真实的数据传递还是需要通过物理接口实现。所以,我们需要将物理成员接口划入到逻辑端口中。不同设备型号和接口类型可以划入的接口数量可能不同,需要结合具体的产品文档来判断。
优点 | 缺点 | |
---|---|---|
堆叠卡堆叠 | 配置简单,不用占用业务口 | 需要购买专用的堆叠卡,成本上升 |
业务口堆叠 | 无额外成本 | 需要占用业务口,配置麻烦 |
四、堆叠的原理
1、角色
只要加入到堆叠系统中的设置,都被称为成员交换机。
Master — 主交换机 — 一个堆叠系统中,有且仅有一个主交换机
Standby — 备交换机 — 如果主交换机出现故障,则由备交换机承担主交换机的职责,一个堆叠系统中,只有一个备交换机。
slave — 从交换机 — 一个堆叠系统中,除了主和备交换机外,剩余所有成员交换机都是从交换机。
2、单机堆叠
仅由一台交换机组建的堆叠系统
3、堆叠ID
用来区分和标定堆叠系统中不同的交换机的。堆叠ID在一个堆叠系统中是唯一的。堆叠ID的取值范围0-8。
- G 0/0/0— 槽位号/子卡号/端口号 — 槽位号一般默认为0,但是如果设备定义了堆叠ID,则槽位号会变成对应的堆叠ID。
- 注意:堆叠ID的唯一性可以由网络管理员手工配置保证,但是,如果配置存在冲突或者多台设备没有配置,堆叠系统中的主交换机会对多有成员交换机的堆叠ID进行管理,会对ID冲突设备从最小的ID进行遍历,找到第一个空闲的ID分配给该设备。
- 一台设备如果从一个堆叠系统中退出,他将继承堆叠系统中的堆叠ID,除非手工更改,或者他加入到其他堆叠系统中,存在冲突备主交换机修改。
4、堆叠的优先级
附加在每一个成员交换上,用来进行角色选举的属性。提供手工干涉选举的一个参数。优先级越大,成为主交换机的几率越大,其取值1- 255。其默认初始值为100。
堆叠角色的选举是非抢占模式的。
5、堆叠的建立过程
- 1、物理连接
首先,需要根据网络需求,选择适当的连接方式和连接拓扑,来组建堆叠网络。
链形连接
1、其首尾不用相连,更适合远距离堆叠
2、图形结构简单,容错较低,任何一条链路断开都将堆警分裂
环形连接
1、可靠性更高,对堆叠分裂具有一定的容错
2、因为首尾需要相连,所以,不太适合远距离的堆叠
总结:近距离堆叠,推荐使用环形拓扑,其稳定性更好;远距离堆叠,推荐使用链形拓扑,部署成本更低。 - 2、主交互机的选举
1、堆叠成员的加入— 因为堆叠系统是非抢占模式的,所以,如果一个完成的堆叠系统中需要加入一台成员设备,该设备将直接以从交换机的身份加入,不影响远系统的角色。
2、堆叠合并 — 两个堆叠系统中的主交换机进行竞选。竞选成功的主设备所在的堆叠系统其角色不会发生变化,竞选失败的主所对应的堆叠系统,所有设备将重新启动,以从交换机的身份加入到胜利堆叠系统中,并同步主交换机的配置。
因为华为交换机默认使能了堆叠,而且超时时间只有20S。所以,想要区分这两种场景,只能通过控制设备的启停进行区分,如果交换机关机再加入,则为堆叠成员加入场景;若开机加入,则为堆叠合并场景。
竞选规则(逐条比较)
1、设备的运行状态比较,已经运行的交换机比处于启动状态的交换机优先竞选为主交换机。如果是堆叠合并时两个系统的主进行竞争,则需要比较设备的运行时间,运行时间长的为主。
2、如果第一条相同时,则比较设备堆叠的优选级,优先级高的为主。
3、若优先级相同,则比较设备的MAC地址,优选MAC地址小的作为主交换机 - 3、堆叠ID的分配和备交换的选举
主交换机竞选完成后,主设备会收集所有成员交换机的拓扑信息;之后将拓扑信息同步给所有成员交换机,并分配堆叠ID。之后进行备交换机的选举。
备交换机的选举规则
1、所有设备除了主交换机外最先完成启动的设备为作为备交换机。
2、若启动时间相同,则比较优先级,除主交换机外最高的为备交换机。
3、若优先级相同,则比较MAC地址,除交换机外MAC地址最小的为备交换机。 - 4、软件版本和配置文件的同步
因为堆叠系统要作为一个整体,所以,若备或从交换机和主交换的软件版本不一样,则将自动同步主系统的软件版本,并且,为了保证整体功能一致,也需要同步主的配置信息。
堆叠MAC地址问题
因为整个堆叠系统需要被看作是一个整体,所以需要一个统一的MAC地址。堆叠系统的MAC地址默认使用主交换机的MAC地址。这个MAC地址一旦发生变化,可能会导致流量的中断。如果主交换机发生故障,理论上需要切换成新主的MAC地址。但是为了防止MAC地址变换引起的震荡,华为设定,主退出10分钟(默认值,可以改)内依然使用其MAC地址,如果超时未归,则使用新主的MAC地址。
堆叠分裂
堆叠分裂:指因为堆叠线缆故障导致原来一个堆叠系统分裂成为多个堆叠系统。堆叠一旦分裂,意味着多个堆叠系统将具有完全相同的配置,IP地址,包括10分钟内MAC地址也完全相同,相当于整个网络中出现了两台完全相同的设备,就可能会造成冲突,导致流量中断。
1、原系统中的主和备分裂到了一个堆叠系统中
2、原堆叠系统中的主和备分裂到不同的系统中
MAD — 多主检测
1、直连检测
工作逻辑 — 在堆叠发生之前,检测线缆不传递报文。堆叠一旦发生,分裂的两台设备自身可以检测到,则将通过MAD检测链路默认以1S为周期发送MAD报文,通知分裂的发生,并采取后续处理。
两种直连方式,相对而言,全连的方式可靠性更高,但是需要占用更多的接口。而且,如果设备相距较远,全连成本较高。
2、代理检测
代理检测,必须通过聚合链路来实现检测,不过,聚合链路可以是业务通道,不用占用额外的接口.
工作逻辑:成员交换机默认会以30S为周期沿着聚合链路发送检测报文,正常情况下,收到检测报文不需要做任何处理;如果分裂发生,则和直连检测相同,分裂设备会以1S为周期发送检测报文,通知分裂的产生并实施冲突处理。
冲突处理
其逻辑就是需要将分裂出来的系统进行一次竞选,规则和之前相同,竞选成功的系统将保留配置;竞选失败,则被置为Recovery状态 — 除了配置保留的接口外,所有接口将被关闭。
五、堆叠的配置
1、创建虚拟的堆叠端口
[Stack1]interface stack-port 0/1 --- 创建堆叠口
[Stack1-stack-port0/1]
2、将物理接口拉入堆叠口
[Stack1-stack-port0/1]port interface GigabitEthernet 0/0/1 GigabitEthernet 0/0/2 enable
3、修改堆叠优先级
[Stack1]stack slot 0 priority 200
4、修改堆叠ID
[Stack2]stack slot 1 renumber 2
5、MAD代理检测
堆叠系统配置
[Stack1Jinterface Eth-Trunk 0 --- 进入聚合口
[Stack1-Eth-Trunk0]mad ?
detect Specify detect actionrelay
Relay config
[Stack1-Eth-Trunk0]mad detect mode relay
代理设备
[D1]interface Eth-Trunk 0 -- 进入聚合口
[D1-Eth-Trunk0]mad relay