图分类,图机器学习最新进展

图分类,图机器学习最新进展

1.Flat_Pooling在这里插入图片描述

TitleVenueTaskCodeDataset
DMLAP: Multi-level attention pooling for graph neural networks: Unifying graph representations with multiple localitiesNeural Networks 20221. Graph ClassificationNonesynthetic, OGB-molhiv, OGB-ppa, MCF-7 (TU dataset)
GraphTrans: Representing Long-Range Context for Graph Neural Networks with Global Attention 🌟NIPS 20211. Graph Classification1.PyTorchNCI1, NCI109, code2, molpcba
GMT: Accurate Learning of Graph Representations with Graph Multiset Pooling. 🌟ICLR 20211. Graph Classification 2. Graph Reconstruction 3. Graph Generation1.PyTorch 2.PyTorch-GeometricD&D, PROTEINS, MUTAG, IMDB-B, IMDB-M, COLLAB, OGB-MOLHIV, OGB-Tox21, OGB-ToxCast, OGB-BBBP, ZINC(Reconstruction), QM9(Generation)
QSGCNN: Learning Graph Convolutional Networks based on Quantum Vertex Information PropagationTKDE 20211. Graph ClassificationNoneMUTAG, PTC, NCI1, PROTEINS, D&D, COLLAB, IMDB-B, IMDB-M, RED-B
DropGNN: DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural NetworksNIPS 20211. Graph Classification 2. Graph RegressionPyTorchMUTAG, PTC, PROTEINS, IMDB-B, IMDB-M QM9(Regression)
SSRead: Learnable Structural Semantic Readout for Graph ClassificationICDM 20211. Graph ClassificationPyTorchD&D, MUTAG, Mutagencity, NCI1,PROTEINS, IMDB-B, IMDB-M
FlowPool: Pooling Graph Representations with Wasserstein Gradient FlowsArXiv 20211. Graph ClassificationNoneBZR, COX2, PROTEINS
DKEPool: Distribution Knowledge Embedding for Graph PoolingTKDE 20221. Graph ClassificationPyTorchIMDB-B, IMDB-M, MUTAG, PTC, NCI1, PROTEINS, REDDIT-BINARY, OGB-MOLHIV, OGB-BBB
FusionPooling: Hybrid Low-order and Higher-order Graph Convolutional NetworksComputational Intelligence and Neuroscience 20201. Text Classification 2. node classificationNone20-Newsgroups // Cora, CiteSeer, PubMed
SOPool: Second-Order Pooling for Graph Neural NetworksTPAMI 20201. Graph ClassificationNoneMUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI
StructSa: Structured self-attention architecture for graph-level representation learningPattern Recognition 20201. Graph ClassificationNoneMUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI
NAS: Graph Neural Network Architecture Search for Molecular Property PredictionICBD 20201. Graph RegressionNoneQM7, QM8, QM9, ESOL, FreeSolv, Lipophilicity
Neural Pooling for Graph Neural NetworksArXiv 20201. Graph ClassificationNoneMUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI-5K
GFN: Are Powerful Graph Neural Nets Necessary? A Dissection on Graph ClassificationArXiv 20191. Graph ClassificationPyTorchMUTAG, PROTEINS, D&D, NCI1, ENZYMES, IMDB-B, IMDB-M, RDT-B. REDDTIT-Multi-5K, REDDIT-Multi-12K, COLLAB
GIN: How Powerful are Graph Neural Networks?ICLR 20191. Graph ClassificationPyTorchMUTAG, PROTEINS, PTC, NCI1, IMDB-B, IMDB-M, RDT-B. RDT-Multi-5K, COLLAB
Semi-Supervised Graph Classification: A Hierarchical Graph PerspectiveWWW 20191. Graph ClassificationPyTorchTencent
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph ClassificationKDD 20191. Graph ClassificationTensorFlowMUTAG, PTC PROTEINS,ENZYMES
MSNAPool: Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph ProximityIJCAI 20191. Graph Classification 2. Graph similarity ranking 3. Graph visualizationTensorFlowPTC, IMDB-B, WEB, NCI109, REDDIT-Multi-12K
PiNet: Attention Pooling for Graph ClassificationNIPS-W 20191. Graph ClassificationCodeMUTAG, PTC, NCI1, NCI109, PROTEINS, Erdõs-Rényi graphs
DAGCN: Dual Attention Graph Convolutional NetworksIJCNN 20191. Graph ClassificationPyTorchNCI1, D&D, ENZYMES, NCI109, PROTEINS, PTC
DeepSet: Universal Readout for Graph Convolutional Neural NetworksIJCNN 20191. Graph ClassificationCodeMUTAG, PTC, NCI1, PROTEINS,D&D
SortPool: An End-to-End Deep Learning Architecture for Graph ClassificationAAAI 20181. Graph Classification1.PyTorch-Geometric, 2.Matlab, 3.PyTorch 4.SpektralMUTAG, PTC, NCI1 PROTEINS, D&D
Set2set: Order Matters: Sequence to Sequence for SetsICLR 2016-PyTorch-Geometric-
GatedPool: Gated Graph Sequence Neural NetworksICLR 2016-PyTorch-Geometric-
DCNN: Diffusion-Convolutional Neural NetworksNIPS 20161. Graph ClassificationTheanoNCI1, NCI109, MUTAG, PCI, ENZYMES

Hierarchical_Pooling - Node_Clustering_Pooling

TitleVenueTaskCodeDataset
Maximal Independent Vertex Set Applied to Graph PoolingCIKM 20221. Graph ClassificationNonePROTEINS, NCI1, D&D, ENZYMES
Higher-order Clustering and Pooling for Graph Neural NetworksCIKM 20221. Graph Classification 2. Node Clustering1.PyTorchPROTEINS, NCI1, D&D, MUTAGEN., Reddit-B, Cox2-MD, ER-MD, b-hard // Cora, PubMed, DBLP, Coauthor CS ,Amazon Photo, Amazon PC, Polblogs, Eu-email
Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information MaximizationCIKM 20221. Graph ClassificationNoneMUTAG, PROTEINS, PTC, HIV, IMDB-B, IMDB-M
Structural Entropy Guided Graph Hierarchical PoolingICML 20221. Graph Classification 2. Node Classification 3. Graph Reconstruction1. PyTorchMUTAG, PROTEINS, D&D, PTC, NCI1,IMDB-B, IMDB-M // Cora, Citeseer, Pubmed // synthetic datasets (grid and circle)
HGCN:Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal TransportAAAI 20211. Graph Classification1. PyTorchMUTAG, PROTEINS, D&D, NCI109,IMDB-B, IMDB-M
Hierarchical Graph Representation Learning with Local Capsule PoolingMMAsia 20211. Graph Classification 2. Graph Reconstruction1. PyTorchMUTAG, PROTEINS, D&D, PTC, NCI1,IMDB-B, IMDB-M //synthetic datasets (grid and circle)
HGCN:Hierarchical Graph Capsule NetworkAAAI 20211. Graph Classification1. PyTorchMUTAG, NCI1, PROTEINS, D&D, ENZYMES, PTC, NCI109,IMDB-B, IMDB-M, Reddit-BINARY
HAP: Hierarchical Adaptive Pooling by Capturing High-order Dependency for Graph Representation LearningTKDE 20211. Graph Classification 2. Graph Matching 3. Graph Similarity LearningNoneIMDB-B, IMDB-M, COLLAB, MUTAG, PROTEINS, PTC // synthetic datasets (graph matching) // AIDS, LINUX (graph similarity)
LCP: Hierarchical Graph Representation Learning with Local Capsule PoolingMMAsia1. Graph Classification 2. Graph ReconstructionNoneD&D, PROTEINS, IMDB-B, IMDB-M, NCI1, NIC109
MxPool: Multiplex Pooling for Hierarchical Graph Representation LearningArXiv 20211.Graph ClassificationNoneD&D, ENZYMES, PROTEINS, NCI109, COLLAB, RDT-MULTI
HIBPool: Structure-Aware Hierarchical Graph Pooling using Information BottleneckIJCNN 20211. Graph Classification1.PyTorchENZYMES, DD, PROTEINS, NCI1, NCI109,FRANKENSTEIN
MLC-GCN: Graph convolutional networks with multi-level coarsening for graph classificationKnowledge-Based Systems 20201.Graph ClassificationNoneD&D, ENZYMES, MUTAG, PROTEINS,IMDB-BINARY, IMDB-MULTI, REDDIT- BINARY, REDDIT-MULTI-5K
DGM: Deep Graph Mapper: Seeing Graphs through the Neural LensNIPS-W 20201. Graph Classification 2. Graph Visualisation1.PyTorchD&D, PROTEINS, COLLAB, REDDIT-B
MuchGNN: Multi-Channel Graph Neural NetworksIJCAI 20201. Graph ClassificationNonePTC, DD, PROTEINS, COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-MULTI-12K
MinCutPool: Spectral Clustering with Graph Neural Networks for Graph PoolingICML 20201. Graph Classification 2. Graph Regression1.PyTorch-Geometric, 2.PyTorchD&D, PROTEINS, COLLAB, REDDIT-BINARY, Mutagenicity, QM9(regression)
HaarPool: Haar Graph PoolingICML 20201. Graph Classification 2. Graph Regression1.PyTorchMUTAG, PROTEINS, NCI1, NCI109, MUTAGEN, TRIANGLES, QM7(regression)
MemPool: Memory-Based Graph NetworksICLR 20201. Graph Classification 2. Graph Regression1.PyTorch-Geometric, 2.PyTorchD&D, PROTEINS, COLLAB, REDDIT-BINARY,ENZYMES ESOL(reg), Lipophilicity(reg)
StructPool: Structured Graph Pooling via Conditional Random FieldsICLR 20201.Graph Classification1. PyTorchENZYMES, PTC, MUTAG, PROTEINS, COLLAB, IMDB-B, IMDB-M
MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph Representation and LearningArXiv 20201.Graph Classification 2. Graph RegressionNoneD&D, PROTEINS, MUTAG, ENZYMES // QM7 (regression) MUTA-GENICITY
ProxPool: Graph Pooling with Node Proximity for Hierarchical Representation LearningArXiv 20201.Graph ClassificationNoneD&D, PROTEINS, NCI1, NCI109, MUTA-GENICITY
CliquePool: Clique pooling for graph classificationICLR-W 20191. Graph ClassificationNoneD&D PROTEINS, ENZYMES, COLLAB
NMF: A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural NetworksAIIA 20191. Graph ClassificationNoneD&D, PROTEINS, NCI1, ENZYMES, COLLAB
GRAHIES: Multi-Scale Graph Representation Learning with Latent Hierarchical StructureCogMI 20191. Node ClassificationNoneCora, CiteSeer, PubMed
EigenPool: Graph Convolutional Networks with EigenPoolingKDD 20191. Graph Classification1.PyTorchD&D, PROTEINS, NCI1, NCI109, MUTAG,

参考链接:https://github.com/LiuChuang0059/graph-pooling-papers#flat_pooling
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9460814

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/65962.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

7-8 计算存款利息

本题目要求计算存款利息,计算公式为interestmoney(1rate)year−money,其中interest为存款到期时的利息(税前),money是存款金额,year是存期,rate是年利率。 输入格式: 输入在一行中…

2023国赛 高教社杯数学建模ABCDE题思路汇总分析

文章目录 0 赛题思路1 竞赛信息2 竞赛时间3 建模常见问题类型3.1 分类问题3.2 优化问题3.3 预测问题3.4 评价问题 4 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 竞赛信息 全国大学生数学建模…

ModaHub魔搭社区:Milvus Cloud向量数据库可以部分避免AI幻觉

向量数据库的技术优势使其更适合在AI场景下应用,能够为AI的开发、增强内容生成的准确性提供重要的技术支撑。进一步来讲,向量数据库也被看作是大语言模型的记忆与灵魂,对于解决大模型的“幻觉”问题至关重要。 由于大模型是基于已有数据训练而…

winform中嵌入cefsharp, 并使用selenium控制

正常说, 需要安装的包 下面是所有的包 全部代码 using OpenQA.Selenium.Chrome; using OpenQA.Selenium; using System; using System.Windows.Forms; using CefSharp.WinForms; using CefSharp;namespace WindowsFormsApp2 {public partial class Form1 : Form{//…

04.利用Redis国逻辑过期实现缓存功能---解决缓存击穿

学习目标&#xff1a; 提示&#xff1a;学习如何利用Redis逻辑过期实现添加缓存功能解决缓存击穿 学习产出&#xff1a; 缓存击穿讲解图&#xff1a; 解决方案&#xff1a; 采用互斥锁采用逻辑过期 1. 准备pom环境 <dependency><groupId>org.springframework…

笔记本电脑如何把sd卡数据恢复

在使用笔记本电脑过程中&#xff0c;如果不小心将SD卡里面的重要数据弄丢怎么办呢&#xff1f;别着急&#xff0c;本文将向您介绍SD卡数据丢失常见原因和恢复方法。 ▌一、SD卡数据丢失常见原因 - 意外删除&#xff1a;误操作或不小心将文件或文件夹删除。 - 误格式化&#…

PyTorch深度学习实战(11)——卷积神经网络

PyTorch深度学习实战&#xff08;11&#xff09;——卷积神经网络 0. 前言1. 全连接网络的缺陷2. 卷积神经网络基本组件2.1 卷积2.2 步幅和填充2.3 池化2.3 卷积神经网络完整流程 3. 卷积和池化相比全连接网络的优势4. 使用 PyTorch 构建卷积神经网络4.1 使用 PyTorch 构建 CNN…

Vulhub之Apache HTTPD 换行解析漏洞(CVE-2017-15715)

Apache HTTPD是一款HTTP服务器&#xff0c;它可以通过mod_php来运行PHP网页。其2.4.0~2.4.29版本中存在一个解析漏洞&#xff0c;在解析PHP时&#xff0c;1.php\x0A将被按照PHP后缀进行解析&#xff0c;导致绕过一些服务器的安全策略。 1、docker-compose build、docker-compo…

【数据结构与算法】十大经典排序算法-插入排序

&#x1f31f;个人博客&#xff1a;www.hellocode.top &#x1f3f0;Java知识导航&#xff1a;Java-Navigate &#x1f525;CSDN&#xff1a;HelloCode. &#x1f31e;知乎&#xff1a;HelloCode &#x1f334;掘金&#xff1a;HelloCode ⚡如有问题&#xff0c;欢迎指正&#…

Ubuntu系统没有声音

现象 新按转的Ubuntu系统没有声音&#xff0c;怀疑是声卡选择的问题 解决方法 1、在终端输入alsamixer命令 2、按下F6键选择声卡 不要选择NVidia&#xff0c;而是选择HD-Audio 3、将所有音量调到最大&#xff0c;把disable调成enable

【Tomcat】(Tomcat 下载Tomcat 启动Tomcat 简单部署 基于Tomcat进行网站后端开发)

文章目录 Tomcat下载Tomcat启动Tomcat简单部署 基于Tomcat进行网站后端开发 Tomcat Tomcat 是一个 HTTP 服务器.HTTP 协议就是 HTTP 客户端和 HTTP 服务器之间的交互数据的格式. HTTP 服务器我们可以通过 Java Socket 来实现. 而 Tomcat 就是基于 Java 实现的一个开源免费,也是…

Linux学习之sed多行模式

N将下一行加入到模式空间 D删除模式空间中的第一个字符到第一个换行符 P打印模式空间中的第一个字符到第一个换行符 doubleSpace.txt里边的内容如下&#xff1a; goo d man使用下边的命令可以实现把上边对应的内容放到doubleSpace.txt。 echo goo >> doubleSpace.txt e…