目录
基于Swap Set分析新旧策略更替的影响
Swap Set 简介
基于Swap Set 评估新旧策略效能
Swap in客群分析指标的近似估计
基于Swap Set分析新旧策略更替的影响
在贷前授信审批场景和贷中用信审批场景策略的日常调整中,通常是既做加法也做减法,即策略有上线,也有下线,若一直上线新策略而不下线效能变差的旧策略,那么整体通过率将越来越低,放贷规模越来越小,导致金融机构无钱可赚。在对新旧策略进行更替时,通常需要分析新策略较旧策略有怎样的提升以及新旧策略更替后对业务的影响,这个分析过程可以通过Swap Set(交换集)来实现。
Swap Set 简介
在对新旧策略更替时,新旧策略会分别圈定相应的通过和拒绝客群,这些客群两两交叉就形成了图所示的SwapSet矩阵。
新旧策略将客群划分为四个不同的子客群,不同子客群对应的含义如下。
1)All in(A):矩阵中字母A对应的格子,指同时被新旧策略通过,审批状态没有变化的客群。
2)Swap in(C):矩阵中字母C对应的格子,指旧策略拒绝但新策通过的态群,即换入客群。
3)Swap out(B):矩阵中字母B对应的格子,指旧策略通过但新策略拒绝的客群,即换出客群
4)All out (D):矩阵中字母D对应的格子,指同时被新旧策略拒绝,审批状态没有变化的客群。
接下来,主要基于图所示的Swap Set 矩阵评估新旧策略效能以及新旧策略更替后对业务指标的影响、并基于评估结果决定是否进行新旧策略更替。
基于Swap Set 评估新旧策略效能
结合SwapSet矩阵,我们期望在通过率相同的情况下新旧策略的更替可以换人更多的好客户,换出更多的坏客户,用坏客户交换好客户,从而降低整体的坏账率,或者在坏账率相同的情况下,尽可能提升通过率,这是新策略效能优于旧策略效能的直接体现,当然,若能在提升通过率的同时降低坏账率,无疑是最好的结果。
假设我们进行了新策略挖掘和已有策略效能评估,基于分析结果要对一些新旧策略进行更替,预计要下线9条效能变差的旧策略,待下线的9条策略组成旧策略集,同时打算上线8条效能好的新策略,待上线的8条策略形成新策略集,则新旧策略集会分别圈定相应的通过和拒绝客群,这些客群两两交叉形成如图所示的Swap Set 矩阵。
在图中,旧策略集的通过率为38%,新策略集换入6%的客群,换出4%的客群,通过率达到了40%,通过率较旧策略集提升了2%;数量口径的坏账率,旧策略集通过客群的坏账率约为8.16%,新策略集换入客群的坏账率约为6.67%,换出客群的坏账率约为15%,新策略集最终通过客群的坏账率约为7.25%,较旧策略集下降了约0.91%。分析发现,新旧策略更替后,通过率提升并且坏账率下降了,说明新策略集效能是明显优于旧策略集的。
Swap in客群分析指标的近似估计
在上述示例中会发现坏账率的计算存在问题,Swap in 客群和 All out 客群均为申请被拒绝的客群,实际上并无风险表现,故无法准确衡量其好坏,如何评估这两部分客群的坏账率呢?可采用以下两种近似的方式来得到相应的结果。
1)对通过了准入策略和反欺诈核身策略的客群随机抽取一部分进行随机测试(一般抽取比例在2%-5%之间),随机测试组的客户命中策略后只做标记但不拒绝,让这些客户正常通过,这样随机测试的客户均会有风险表现,可基于这些有风险表现的随机测试样本近似评估新旧策略效能和策略更替的影响。
2)寻找对坏客户区分度高的模型分,如模型分小于某个值,则近似认为是坏客户,大于或等于该值,则近似认为是好客户,分析Swap in客群和Allout 客群对应的模型分取值情况,由模型分来近似衡量上述客群的坏账率,进而近似评估新旧策略效能和策略更替的影响。
风控是经营风险和管控风险的过程,在这个过程中,我们需要在风险和收益之间寻求平衡,进而实现利润最大化的目标,而Swap Set分析工具有助于推动实现这个风控目标,所以灵活运用Swap Set工具进行风险分析是必要的。