【Megatron-DeepSpeed】张量并行工具代码mpu详解(四):张量并行版Embedding层及交叉熵的实现及测试

相关博客
【Megatron-DeepSpeed】张量并行工具代码mpu详解(四):张量并行版Embedding层及交叉熵的实现及测试
【Megatron-DeepSpeed】张量并行工具代码mpu详解(三):张量并行层的实现及测试
【Megatron-DeepSpeed】张量并行工具代码mpu详解(一):并行环境初始化
【Megatron-DeepSpeed】张量并行工具代码mpu详解(二):Collective通信操作的封装mappings
【深度学习】【分布式训练】DeepSpeed:AllReduce与ZeRO-DP
【深度学习】混合精度训练与显存分析
【深度学习】【分布式训练】Collective通信操作及Pytorch示例
【自然语言处理】【大模型】大语言模型BLOOM推理工具测试
【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型
【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍

张量并行版Embedding层及交叉熵的实现及测试

​ Megatron-DeepSpeed是DeepSpeed版本的NVIDIA Megatron-LM。像BLOOM、GLM-130B等主流大模型都是基于Megatron-DeepSpeed开发的。这里以BLOOM版本的Megetron-DeepSpeed为例,介绍其模型并行代码mpu的细节(位于megatron/mpu下)。

​ 理解该部分的代码需要对模型并行的原理以及集合通信有一定的理解,可以看文章:

  • 【深度学习】【分布式训练】Collective通信操作及Pytorch示例
  • 【深度学习】【分布式训练】一文捋顺千亿模型训练技术:流水线并行、张量并行和3D并行
  • 【深度学习】【分布式训练】DeepSpeed:AllReduce与ZeRO-DP

强烈建议阅读,不然会影响本文的理解:

  • 【Megatron-DeepSpeed】张量并行工具代码mpu详解(一):并行环境初始化
  • 【Megatron-DeepSpeed】张量并行工具代码mpu详解(二):Collective通信操作的封装mappings
  • 【Megatron-DeepSpeed】张量并行工具代码mpu详解(三):张量并行层的实现及测试

阅读建议:

  1. 本文仅会解析核心代码,并会不介绍所有代码;
  2. 本文会提供一些测试脚本来展现各部分代码的功能;
  3. 建议实际动手实操来加深理解;
  4. 建议对Collective通信以及分布式模型训练有一定理解,再阅读本文;

一、总览

​ mpu目录下核心文件有:

  • initialize.py:负责数据并行组、张量并行组和流水线并行组的初始化,以及获取与各类并行组相关的信息;
  • data.py:实现张量并行中的数据广播功能;
  • cross_entropy.py:张量并行版本的交叉熵;
  • layers.py:并行版本的Embedding层,以及列并行线性层和行并行线性层;
  • mappings.py:用于张量并行的通信操作;

二、张量并行版Embedding层

在这里插入图片描述

​ Embedding层本质就是一个查找表。如上图所示,张量并行版embedding层就是将完整的embedding层,在vocab的维度切分。张量并行组中的每个进程仅持有部分embedding层。

1. 实现代码

​ 这里直接在原始的文件(megatron/mpu/layers.py)中,添加一个自定义的并行版Embedding层。其与原始版完全相同,仅添加了一些输出来展示整个过程。

# layers.py
class MyVocabParallelEmbedding(torch.nn.Module):def __init__(self, num_embeddings, embedding_dim,init_method=init.xavier_normal_):super(MyVocabParallelEmbedding, self).__init__()# 初始化一些参数self.num_embeddings = num_embeddings # 词表大小self.embedding_dim = embedding_dimself.padding_idx = Noneself.max_norm = Noneself.norm_type = 2.self.scale_grad_by_freq = Falseself.sparse = Falseself._weight = Noneself.tensor_model_parallel_size = get_tensor_model_parallel_world_size()# 张量并行组中的每个rank仅持有部分vocab embedding# 这里会计算当前rank持有的vocab的起始和结束位置self.vocab_start_index, self.vocab_end_index = \VocabUtility.vocab_range_from_global_vocab_size(self.num_embeddings, get_tensor_model_parallel_rank(),self.tensor_model_parallel_size)# 当前rank持有的部分vocab的大小self.num_embeddings_per_partition = self.vocab_end_index - \self.vocab_start_indexargs = get_args()# embedding层添加LayerNormif mpu.is_pipeline_first_stage() and (args.use_bnb_optimizer or args.embed_layernorm):self.norm = LayerNorm(embedding_dim)# bnb是指bitsandbytes,该库针对8-bit做了一些cuda函数的封装,这里忽略if args.use_bnb_optimizer:# for BNB we ignore the passed init_method and use torch.nn.init.xavier_uniform_# modified to calculate std on the unpartitioned embeddinginit_method = partial(xavier_uniform_tensor_parallel_, tp_degree=self.tensor_model_parallel_size)# 初始化embedding层的权重# 每个rank仅初始化自己所持有的那部分if args.use_cpu_initialization:self.weight = Parameter(torch.empty(self.num_embeddings_per_partition, self.embedding_dim,dtype=args.params_dtype))_initialize_affine_weight_cpu(self.weight, self.num_embeddings, self.embedding_dim,self.num_embeddings_per_partition, 0, init_method)else:self.weight = Parameter(torch.empty(self.num_embeddings_per_partition, self.embedding_dim,device=torch.cuda.current_device(), dtype=args.params_dtype))_initialize_affine_weight_gpu(self.weight, init_method,partition_dim=0, stride=1)# bnb(忽略)if args.use_bnb_optimizer:from bitsandbytes.optim import GlobalOptimManagerGlobalOptimManager.get_instance().override_config(self.weight, 'optim_bits', 32)GlobalOptimManager.get_instance().register_parameters(self.weight)def forward(self, input_):if torch.any(input_ >= self.num_embeddings):raise ValueError(f"There is an input id in the input that is greater than the highest possible input id.\nInput: {input_}\nnum_embeddings: {self.num_embeddings}")# 全局rankglobal_rank = torch.distributed.get_rank()# 张量并行组中的ranktp_rank = get_tensor_model_parallel_rank()info = f"*"*20 + \f"\n> global_rank={global_rank}\n" + \f"> tensor parallel rank={tp_rank}\n" + \f"> full embedding size={(self.num_embeddings, self.embedding_dim)}\n" + \f"> partial embedding size={list(self.weight.size())}\n" \f"> input = {input_}\n" \f"> vocab_start_index={self.vocab_start_index}, vocab_end_index={self.vocab_end_index}\n"if self.tensor_model_parallel_size > 1:# Build the mask.input_mask = (input_ < self.vocab_start_index) | \(input_ >= self.vocab_end_index)# Mask the input.masked_input = input_.clone() - self.vocab_start_indexmasked_input[input_mask] = 0else:# input_ is garanted to be in the range [0:self.vocab_end_index - self.vocab_start_index] thanks to the first checkmasked_input = input_info += f"> input_mask={input_mask} \n"info += f"> masked_input={masked_input} \n"# 获得embeddingoutput_parallel = F.embedding(masked_input, self.weight,self.padding_idx, self.max_norm,self.norm_type, self.scale_grad_by_freq,self.sparse)# 由于在当前rank上,仅能获得部分输入的embedding# 因此,将mask掉的input对应的embedding设置为全0if self.tensor_model_parallel_size > 1:output_parallel[input_mask, :] = 0.0info += f"> output_parallel={output_parallel}\n"# 上一步设置为全0的embedding会在这一步通过allreduce,组装成完整的embeddingoutput = reduce_from_tensor_model_parallel_region(output_parallel)info += f"> output={output}\n"if hasattr(self, 'norm'):output = self.norm(output)print(info, end="")return output

2. 测试脚本

​ 实验设置为:张量并行度为2,流水线并行度也为2。测试脚本比较简单,直接调用上面实现的MyVocabParallelEmbedding

# test_embedding.py
import sys
sys.path.append("..")from megatron.mpu import layers
from commons import set_random_seed
from commons import print_separator
from megatron.initialize import _initialize_distributed
from megatron.global_vars import set_global_variables
import megatron.mpu as mpu
from torch.nn.parameter import Parameter
import torch.nn.init as init
import torch
import randomdef test_parallel_embedding():batch_size = 2seq_length = 4vocab_size = 6hidden_size = 8seed = 123set_random_seed(seed)# (2,4)input_data = torch.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size).cuda()embedding_vocab_parallel = layers.MyVocabParallelEmbedding(vocab_size, hidden_size, init_method=init.normal_).cuda()output = embedding_vocab_parallel(input_data)def main():set_global_variables(ignore_unknown_args=True)_initialize_distributed()world_size = torch.distributed.get_world_size()print_separator('Test test_parallel_embedding')test_parallel_embedding()if __name__ == '__main__':main()

启动命令:

options=" \--tensor-model-parallel-size 2 \--pipeline-model-parallel-size 2 \--num-layers 10 \--hidden-size 768 \--micro-batch-size 2 \--num-attention-heads 32 \--seq-length 512 \--max-position-embeddings 512\--use_cpu_initialization True"cmd="deepspeed test_embedding.py $@ ${options}"eval ${cmd}

3. 测试结果

在这里插入图片描述

  • 全局rank为2,在张量并行组中的rank为0;
  • 完整的embedding层大小应为(6, 8),当前设备持有的embedding层大小为(3, 8),符合张量并行度为2的假设;
  • 当前设备持有的词表id范围介于0到3,输入中超出该词表范围都会被mask;
  • 当前设备的输出(output_parallel),会有部分embedding为全0,而完整的输出(output)则将张量并行组中所有的embedding输出都聚合在一起;

三、张量并行版交叉熵

​ 我们以自然语言模型为例,展示交叉熵的计算原理。

​ 若模型针对单个token预测的logit表示为 l ⃗ = [ l 1 , … , l k ] \vec{l}=[l_1,\dots,l_k] l =[l1,,lk],经过softmax转换后的概率分布为 p ⃗ = [ p 1 , … , p k ] \vec{p}=[p_1,\dots,p_k] p =[p1,,pk],其中:
p i = e l i ∑ j k e l j p_i=\frac{e^{l_i}}{\sum_{j}^k e^{l_j}} pi=jkeljeli
该token的真实标签表示为 y ⃗ = [ y 1 , … , y k ] \vec{y}=[y_1,\dots,y_k] y =[y1,,yk],由于其是one-hot编码,所以 y ⃗ \vec{y} y 中仅有一个值为1,其余均为0。那么该token上的交叉熵损失函数为
loss = − ∑ i = 1 k y i log ⁡ ( p i ) = − ∑ i = 1 k y i log ⁡ ( e l i ∑ j k e l j ) = ∑ i = 1 k y i [ log ⁡ ( ∑ j k e l j ) − log ⁡ ( e l i ) ] = log ⁡ ( ∑ j k e l j ) − ∑ i = 1 k y i log ⁡ ( e l i ) = log ⁡ ( ∑ j k e l j ) − ∑ i = 1 k y i l i \begin{align} \text{loss}&=-\sum_{i=1}^k y_i\log(p_i) \\ &=-\sum_{i=1}^k y_i\log(\frac{e^{l_i}}{\sum_{j}^k e^{l_j}}) \\ &=\sum_{i=1}^k y_i[\log(\sum_{j}^k e^{l_j})-\log(e^{l_i})] \\ &=\log(\sum_{j}^k e^{l_j})-\sum_{i=1}^k y_i \log(e^{l_i}) \\ &=\log(\sum_{j}^k e^{l_j})-\sum_{i=1}^k y_i {l_i} \end{align} loss=i=1kyilog(pi)=i=1kyilog(jkeljeli)=i=1kyi[log(jkelj)log(eli)]=log(jkelj)i=1kyilog(eli)=log(jkelj)i=1kyili
由于模型输出的 l ⃗ \vec{l} l 是已知的,那么上式第一项 log ⁡ ( ∑ j k e l j ) \log(\sum_{j}^k e^{l_j}) log(jkelj)是一个固定的常数;由于所有的 y i y_i yi中仅有一个是1,那么第二项 ∑ i = 1 k y i l i \sum_{i=1}^k y_i {l_i} i=1kyili本质上就是正确token对应的logit值。

mpu代码中的交叉熵实现基本上遵循上面的分析,仅是添加了batch size和seq_length维度,但核心思想不变

1. 实现代码

​ 同样,也是在原始文件(megatron/mpu/cross_entropy.py)中,添加一个自定义的并行版交叉熵。该实现与原版完全相同,仅添加了一些输出来展示整个过程。

# cross_entropy.py
class _MyVocabParallelCrossEntropy(torch.autograd.Function):@staticmethoddef forward(ctx, vocab_parallel_logits, target):# vocab_parallel_logits: (batch_size, seq_length, vocab_size)# target: (batch_size, seq_length)global_rank = torch.distributed.get_rank()tp_rank = get_tensor_model_parallel_rank()# 在vocab维度取最大值,也就是每个token对于logits的最大值logits_max = torch.max(vocab_parallel_logits, dim=-1)[0]torch.distributed.all_reduce(logits_max,op=torch.distributed.ReduceOp.MAX,group=get_tensor_model_parallel_group())vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1))info = f"*"*20 + \f"\n> global_rank={global_rank}\n" + \f"> tp_rank={tp_rank}\n" + \f"> size of vocab_parallel_logits={list(vocab_parallel_logits.size())}\n" + \f"> size of target={list(target.size())}\n"# 依据当前进程持有的部分词表大小partition_vocab_size,以及张量并行组中rank和world size,# 确定出当前进程持有词表的起始索引vocab_start_index和结束索引vocab_end_indexget_vocab_range = VocabUtility.vocab_range_from_per_partition_vocab_sizepartition_vocab_size = vocab_parallel_logits.size()[-1]rank = get_tensor_model_parallel_rank()world_size = get_tensor_model_parallel_world_size()vocab_start_index, vocab_end_index = get_vocab_range(partition_vocab_size, rank, world_size)# 将不在词表中的target遮蔽掉target_mask = (target < vocab_start_index) | (target >= vocab_end_index)masked_target = target.clone() - vocab_start_indexmasked_target[target_mask] = 0# ligits_2d: (batch_size*seq_length, vocab_size)logits_2d = vocab_parallel_logits.view(-1, partition_vocab_size)# masked_target_1d: (batch_size*seq_length)masked_target_1d = masked_target.view(-1)arange_1d = torch.arange(start=0, end=logits_2d.size()[0],device=logits_2d.device)# predicted_logits_1d 表示正确token对应的logitpredicted_logits_1d = logits_2d[arange_1d, masked_target_1d]predicted_logits_1d = predicted_logits_1d.clone().contiguous()predicted_logits = predicted_logits_1d.view_as(target)# 将当前进程无法获得的logits设置为0,用于后续allreduce组成完成logitspredicted_logits[target_mask] = 0.0info += f"> size of logits_2d={list(logits_2d.size())}\n" + \f"> size of masked_target_1d={list(masked_target_1d.size())}\n" + \f"> size of predicted_logits={list(predicted_logits_1d.size())}\n"# 各个进程持有的predicted_logits的大小是完全相同的# 但是,当前进程持有的predicted_logits仅在当前词表上才有取值,其余值为0# 通过allreduce即可得到完整的predicted_logitstorch.distributed.all_reduce(predicted_logits,op=torch.distributed.ReduceOp.SUM,group=get_tensor_model_parallel_group())# 求softmax分母的部分exp_logits = vocab_parallel_logitstorch.exp(vocab_parallel_logits, out=exp_logits)sum_exp_logits = exp_logits.sum(dim=-1)torch.distributed.all_reduce(sum_exp_logits,op=torch.distributed.ReduceOp.SUM,group=get_tensor_model_parallel_group())# 对应上面公式推导的最终结果# loss: (batch_size, seq_length)。# loss是一个矩阵,矩阵的值对应单个token的交叉熵loss = torch.log(sum_exp_logits) - predicted_logitsinfo += f"> size of sum_exp_logits={list(sum_exp_logits.size())}\n" + \f"> size of loss={list(loss.size())}\n"print(info, end="")exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))ctx.save_for_backward(exp_logits, target_mask, masked_target_1d)return loss@staticmethoddef backward(ctx, grad_output):# Retreive tensors from the forward path.softmax, target_mask, masked_target_1d = ctx.saved_tensors# All the inputs have softmax as thier gradient.grad_input = softmax# For simplicity, work with the 2D gradient.partition_vocab_size = softmax.size()[-1]grad_2d = grad_input.view(-1, partition_vocab_size)# Add the gradient from matching classes.arange_1d = torch.arange(start=0, end=grad_2d.size()[0],device=grad_2d.device)grad_2d[arange_1d, masked_target_1d] -= (1.0 - target_mask.view(-1).float())# Finally elementwise multiplication with the output gradients.grad_input.mul_(grad_output.unsqueeze(dim=-1))return grad_input, None

2. 测试脚本

# test_cross_entropy.py
import sys
sys.path.append("..")from commons import set_random_seed
from commons import IdentityLayer
from commons import print_separator
from commons import initialize_distributed
from megatron.mpu.cross_entropy import _MyVocabParallelCrossEntropy
import megatron.mpu as mpu
import torch.nn.functional as F
import torch
import randomdef test_cross_entropy():tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()batch_size = 32seq_length = 128vocab_size_per_partition = 500logits_scale = 1000.0vocab_size = vocab_size_per_partition * tensor_model_parallel_sizeseed = 1234set_random_seed(seed)identity = IdentityLayer((batch_size, seq_length, vocab_size),scale=logits_scale).cuda()logits = identity()logits_parallel = mpu.scatter_to_tensor_model_parallel_region(logits)target = torch.cuda.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size)loss = _MyVocabParallelCrossEntropy.apply(logits_parallel, target).mean()if __name__ == '__main__':initialize_distributed()world_size = torch.distributed.get_world_size()tensor_model_parallel_size = 2pipeline_model_parallel_size = 2mpu.initialize_model_parallel(tensor_model_parallel_size,pipeline_model_parallel_size)test_cross_entropy()

启动命名:

deepspeed test_cross_entropy.py

3. 测试结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/66548.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】开源:abseil-cpp基础组件库配置使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍abseil-cpp基础组件库配置使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#…

小程序具体开发

window 导航栏 属性名类型默认值作用navigationBarTitleText string字字符串导航栏标题内容navigationBarBackgroundColorHexcolor#000000设置导航栏背景颜色&#xff08;比如荧黄色 #ffa&#xff09;navigationBarTextStylestringwhite设置导航栏标题的颜色&#xff08;仅含有…

在 Windows 上安装 OpenCV – C++ / Python

在这篇博文中&#xff0c;我们将在 Windows 上安装适用于 C 和 Python 的 OpenCV。 C 安装是在自定义安装 exe 文件的帮助下完成的。而Python的安装是通过Anaconda完成的。 在 Windows 上安装 OpenCV – C / Python&#xff08;opencv官方Wndows上安装openCV- C/ Pthon 的链接…

STM32 F103C8T6学习笔记7:双机无线串口通信

今日尝试配通俩个C8T6单片机之间的无线串口通信&#xff0c;文章提供原理&#xff0c;源码&#xff0c;测试效果图&#xff0c;测试工程下载&#xff1a; 目录 传输不规范问题&#xff1a; 串口通信资源&#xff1a; 单个串口资源理解&#xff1a; 单片机串口资源&#xf…

NIO 非阻塞式IO

NIO Java NIO 基本介绍 Java NIO 全称 Java non-blocking IO&#xff0c;是指 JDK 提供的新 API。从 JDK1.4 开始&#xff0c;Java 提供了一系列改进的输入/输出的新特性&#xff0c;被统称为 NIO&#xff08;即 NewIO&#xff09;&#xff0c;是同步非阻塞的。NIO 相关类都被…

① vue复习。从安装到使用

vue官网&#xff1a;cn.vuejs.org vue安装 cnpm install -g vue/cli 查看是否安装成功 vue --version 创建一个项目 vue create vue-demo(项目名称) 这个取消掉。空格可选中或者取消。 运行项目&#xff1a; cd 进入到项目下 npm run serve 运行成功后&#xff0c;访问这…

k8s ------存储卷(PV、PVC)

目录 一&#xff1a;为什么需要存储卷&#xff1f; 二&#xff1a;emptyDir存储卷 ​三&#xff1a;hostPath存储卷 四&#xff1a;nfs共享存储卷 五&#xff1a;PVC 和 PV 1、PVC 和 PV介绍 2、PV和PVC之间的相互作用遵循的生命周期 3、PV 的4 种状态 4、一个PV从创…

圆满收官丨“2023年度第一季万博智云云迁移架构师训练营”结营了

“2023年度第一季万博智云云迁移架构师训练营”于今日圆满落幕。百余名来自全国各地30企业的工程师报名参加学习&#xff0c;其中60工程师在忙碌工作中抽空参与考试&#xff0c;近40名工程师通过万博智云云迁移架构师OCCE认证。 为了帮助工程师们掌握云迁移基础知识&#xff0c…

Redux - Redux在React函数式组件中的基本使用

文章目录 一&#xff0c;简介二&#xff0c;安装三&#xff0c;三大核心概念Store、Action、Reducer3.1 Store3.2 Reducer3.3 Action 四&#xff0c;开始函数式组件中使用4.1&#xff0c;引入store4.1&#xff0c;store.getState()方法4.3&#xff0c;store.dispatch()方法4.4&…

Qt自定义对话框

介绍 自定义框主要通过对现有对话框QDialog类的派生&#xff0c;根据需求编写成员函数、重载信号函数、槽函数&#xff0c;进而实现在主QWidget中点击某个按钮后&#xff0c;一个对话框的弹出 流程 简化创建派生类 最后点击完成即可。 自定义ui界面&#xff0c;编写成员函数…

【PDF.js】PDF.js的简单使用与CDN加速遇到的问题

PDF.js的简单使用与CDN加速遇到的问题 一、PDF.js是什么&#xff1f;二、PDF.js三、 选择PDF.js的版本下载1. Prebuilt (现代浏览器) *作者选择2. Prebuilt (历史淘汰浏览器)3. Source 来源4. 通过CDN加速5. 文件树PrebuiltSource 6. 尝试查看器 四、选择文档&#xff08;不是使…

【卷积神经网络】卷积,池化,全连接

随着计算机硬件的升级与性能的提高&#xff0c;运算量已不再是阻碍深度学习发展的难题。卷积神经网络&#xff08;Convolution Neural Network&#xff0c;CNN&#xff09;是深度学习中一项代表性的工作&#xff0c;CNN 是受人脑对图像的理解过程启发而提出的模型&#xff0c;其…