【1小时掌握速通深度学习面试6】图神经网络-下

目录

23. GraphSage

24.简述图神经网络的推理机制在其他领域中的应用

与传统NN的区别(GNN优点)


23. GraphSage

GraphSage出现之前的图网络方法需要图中所有的顶点在训练embedding的时候都出现,这些的方法本质上是transductive,不能自然地泛化到未见过的顶点。GraphSAGE是一个inductive的框架,可以利用顶点特征信息(比如文本属性)来高效地为没有见过的顶点生成embedding。

GraphSAGE是为了学习一种节点表示方法,即如何通过从一个顶点的局部邻居采样并聚合顶点特征,而不是为每个顶点训练单独的embedding。GraphSAGE的具体做法是,训练了一组aggregator functions,这些函数学习如何从一个顶点的局部邻居聚合特征信息。每个聚合函数从一个顶点的不同的hops或者说不同的搜索深度聚合信息。测试或是推断的时候,使用训练好的系统,通过学习到的聚合函数来对完全未见过的顶点生成embedding。

GraphSAGE 是Graph SAmple and aggreGatE的缩写,其运行流程如上图所示,可以分为三个步骤:

  •     对图中每个顶点邻居顶点进行采样,因为每个节点的度是不一致的,为了计算高效, 为每个节点采样固定数量的邻居
  •     根据聚合函数聚合邻居顶点蕴含的信息
  •     得到图中各顶点的向量表示供下游任务使用

GraphSAGE 的采样方法:

出于对计算效率的考虑,对每个顶点采样一定数量的邻居顶点作为待聚合信息的顶点。设需要的邻居数量,即采样数量为S,若顶点邻居数少于S,则采用有放回的抽样方法,直到采样出S个顶点。若顶点邻居数大于S,则采用无放回的抽样。(即采用有放回的重采样/负采样方法达到 S)。当然,若不考虑计算效率,完全可以对每个顶点利用其所有的邻居顶点进行信息聚合,这样是信息无损的。GraphSAGE经常在大规模数据使用,因此,经常采样一个固定大小的邻域集,以保持每个batch的计算占用空间是固定的(即 graphSAGE并不是使用全部的相邻节点,而是做了固定size的采样)。

GraphSAGE 的聚合函数:

在过对邻接节点采样后,GraphSAGE 通过聚合函数将采样得到的节点的信息聚合到中心节点,主要的聚合函数有:Mean aggregator,LSTM aggregator,Pooling aggregator。

Mean aggregator

mean aggregator将目标顶点和邻居顶点的第k−1层向量拼接起来,然后对向量的每个维度进行求均值的操作,将得到的结果做一次非线性变换产生目标顶点的第k层表示向量。

24.简述图神经网络的推理机制在其他领域中的应用

与传统NN的区别(GNN优点)

    节点

  •  CNN和RNN等都需要节点的特征按照一定的顺序进行排列
  •  但对于图结构,并没有天然的顺序。所以,GNN采用*在每个节点上分别传播(propagate)*的方式进行学习,由此忽略了节点的顺序,相当于GNN的输出会随着输入的不同而不同。

    边(图结构的边表示节点之间的依存关系)

  •  传统的神经网络不是显式地表达中这种依存关系,而是通过不同节点特征来间接地表达节点之间的关系,这些依赖信息只是作为节点的特征。
  •   GNN 可以通过图形结构进行传播,而不是将其作为节点特征的一部分,通过邻居节点的加权求和来更新节点的隐藏状态

 推理

        推理是高级人工智能的一个非常重要的研究课题,人脑中的推理过程几乎都是基于从日常经验中提取的图形。标准神经网络已经显示出通过学习数据分布来生成合成图像和文档的能力,同时它们仍然无法从大型实验数据中学习推理图。然而,GNN 探索从场景图片和故事文档等非结构性数据生成图形,这可以成为进一步高级 AI 的强大神经模型。

print('下一文: 生成模型')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/670867.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机是如何执行指令的

你好,我是 shengjk1,多年大厂经验,努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注!你会有如下收益: 了解大厂经验拥有和大厂相匹配的技术等 希望看什么,评论或者私信告诉我! 文章目录 一…

【数据结构】有关环形链表题目的总结

文章目录 引入 - 快慢指针思考 - 快慢指针行走步数进阶 - 寻找环形链表的头 引入 - 快慢指针 141-环形链表 - Leetcode 关于这道题,大家可以利用快慢指针,一个每次走两步,一个每次走一步,只要他们有一次相撞了就代表说这是一个链…

Django实验(远程访问+图片显示)

众所周知,Python除了不能生孩子什么都会。Python也是可以做web服务的。 Python做web有一个重点优势是:做一个快速的AI Demo。 第一步:安装一个版本5.0以上django 第二步:构建咱们的Django工程,我取名为BBQ django-adm…

仅为娱乐,Python中如何重定义True为False?

在Python中,True 和 False 是内建的布尔常量,分别代表逻辑上的真和假。它们是不可变的,且在Python语言规范中具有特殊地位,不能被用户直接重定义。尝试给 True 或 False 赋予新的值是违反Python语言规则的,这样的操作会…

(论文阅读-优化器)Orca: A Modular Query Optimizer Architecture for Big Data

目录 摘要 一、简介 二、背景知识 2.1 大规模并行处理 2.2 SQL on Hadoop 三、Orca架构 四、查询优化 4.1 优化工作流 4.2 并行查询优化 五、Metadata Exchange 六、可行性 6.1 Minimal Repros 6.2 优化器准确性测试 七、实验 八、相关工作 8.1 查询优化基础 8…

基于51单片机NEC协议红外遥控发送接收proteus仿真设计

1.主要功能: 设计一个51单片机红外遥控发射接收proteus仿真设计 功能要求: 1、使用单片机模拟红外遥控器发射红外编码; 2、利用从机接收红外编码,并将编码以16进制显示到数码管上。 需注意仿真中51单片机芯片是兼容的&#x…

最近惊爆谷歌裁员

Python团队还没解散完,谷歌又对Flutter、Dart动手了。 什么原因呢,猜测啊。 谷歌裁员Python的具体原因可能是因为公司在进行技术栈的调整和优化。Python作为一种脚本语言,在某些情况下可能无法提供足够的性能或者扩展性,尤其是在…

X 推出 Stories 功能,由 Grok AI 生成新闻摘要

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

Discourse 清理存储空间的方法

Discourse 使用一段时间以后会发现硬盘空间占用非常多。 主要是因为 Docker Image 的问题,如果升级次数越多,空间占用越多。 运行下面的命令: ./launcher cleanup 能够帮助你清理 Discourse 占用的空间。 如下面代码所示: […

【目标检测】Deformable DETR

一、前言 论文: Deformable DETR: Deformable Transformers for End-to-End Object Detection 作者: SenseTime Research 代码: Deformable DETR 特点: 提出多尺度可变形注意力 (Multi-scale Deformable Attention) 解决DETR收敛…

视频剪辑:视频文件元数据修改工具,批量操作提升效率和准确性

在视频剪辑和后期处理的过程中,除了对视频本身的编辑和修改,元数据的管理和修改同样重要。元数据,如标题、艺术家、专辑封面等,不仅提供了视频文件的基本信息,还有助于更好地组织、搜索和共享视频内容。而针对视频文件…

迅雷永久破解

链接:https://pan.baidu.com/s/1ZGb1ljTPPG3NFsI8ghhWbA?pwdok7s 下载后解压 以管理员身份运行绿化.bat,会自动生成快捷方式,如果没有可以在program中运行Thunder.exe