动态规划算法:路径问题

例题一

解法(动态规划):
算法思路:
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移⽅程:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
i. 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
ii. 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
由于我们要求的是有多少种⽅法,因此状态转移⽅程就呼之欲出了: dp[i][j] = dp[i - 1][j]+dp[i][j-1]。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,「添加⼀⾏」,并且「添加⼀列」后,只需将 dp[0][1] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,在填写每⼀⾏的时候
「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回 dp[m][n] 的值。

例题二

解法(动态规划):
算法思路:
本题为不同路径的变型,只不过有些地⽅有「障碍物」,只要在「状态转移」上稍加修改就可。
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之 前的⼀⼩步,有两种情况:
i. [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到[i, j] 位置;
ii. [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
但是, [i - 1, j] [i, j - 1] 位置都是可能有障碍的,此时从上⾯或者左边是不可能到达 [i, j] 位置 的,也就是说,此时的⽅法数应该是 0。 由此我们可以得出⼀个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的值,直接让它等于 0 即可。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,添加⼀⾏,并且添加⼀列后,只需将 dp[1][0] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移」的推导,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n]

例题三

解法(动态规划):
算法思路:
1. 状态表⽰: 对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:⾛到 [i, j] 位置处,此时的最⼤价值。
2. 状态转移⽅程:
对于 dp[i][j] ,我们发现想要到达 [i, j] 位置,有两种⽅式:
i. 从 [i, j] 位置的上⽅ [i - 1, j] 位置,向下⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为
dp[i - 1][j] + grid[i][j]
ii. 从 [i, j] 位置的左边 [i, j - 1] 位置,向右⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为
dp[i][j - 1] + grid[i][j]
我们要的是最⼤值,因此状态转移⽅程为:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有的值都为 0 即可。
4. 填表顺序:
根据「状态转移⽅程」,填表的顺序是「从上往下填写每⼀⾏」,「每⼀⾏从左往右」。
5. 返回值:
根据「状态表⽰」,我们应该返回 dp[m][n] 的值。

例题四

解法(动态规划):
算法思路:
关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。 ⽐较难的地⽅可能就是对于「边界条件」的处理。
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
ii. 从起始位置出发,到达 [i, j] 位置,⼀共有多少种⽅式
这⾥选择第⼆种定义状态表⽰的⽅式:dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。
2. 状态转移⽅程:
对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
i. 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
ii. 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
iii. 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;
我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。
于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j + 1])) + matrix[i][j] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。 在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏初始化为 0 即可。
4. 填表顺序:
根据「状态表⽰」,填表的顺序是「从上往下」。
5. 返回值:
注意这⾥不是返回 dp[m][n] 的值!
题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「 dp 表中最后⼀⾏的最⼩值」。

例题五

解法(动态规划):
算法思路:
像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到
「不同路径」⼀类的题⾥⾯。
1. 状态表⽰:
对于这种路径类的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发,巴拉巴拉;
ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式: dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 到达 [i, j] 位置处的最⼩路径和,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
i. 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
ii. 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。
由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
3. 初始化:可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。 在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n]

例题六

解法(动态规划):
算法思路:
1. 状态表⽰:
这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。
那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影
响。也就是从上往下的状态转移不能很好地解决问题。
这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。
综上所述,定义状态表⽰为:dp[i][j] 表⽰:从[i, j]位置出发,到达终点时所需的最低初始健康点数。
2.
状态转移⽅程:
对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择
(为了⽅便理解,设 dp[i][j] 的最终答案是 x ):
i. ⾛到右边,然后⾛向终点
那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j]
ii. ⾛到下边,然后⾛向终点
那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j]
综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]
但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j]如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j]与 1 取⼀个最⼤值即可:
dp[i][j] = max(1, dp[i][j])
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让 dp[m][n - 1] = dp[m - 1][n] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。
5. 返回值:
根据「状态表⽰」,我们需要返回 dp[0][0] 的值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/671218.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(读书笔记-大模型) LLM Powered Autonomous Agents

目录 智能体系统的概念 规划组件 记忆组件 工具组件 案例研究 智能体系统的概念 在大语言模型(LLM)赋能的自主智能体系统中,LLM 充当了智能体的大脑,其三个关键组件分别如下: 首先是规划,它又分为以下…

idea无法识别加载pom.xml文件

有时idea无法识别加载pom.xml文件,直接打开pom.xml文件,然后添加到maven就行

创新指南|非凡时代的变革型领导力——五个领导力差异化优势将使高管能够重塑他们的组织

大多数商界领袖现在都明白,我们正在经历一场“伟大的重构”,整个行业、经济和社会都在重塑的时期。然而,考虑到他们面临的短期压力,很少有高管发现自己能够真正应对这些变化,这些变化对他们的组织所需的转型意味着什么…

知识图谱在提升大语言模型性能中的应用:减少幻觉与增强推理的综述

幻觉现象指的是模型在生成文本时可能会产生一些听起来合理但实际上并不准确或相关的输出,这主要是由于模型在训练数据中存在知识盲区所致。 为了解决这一问题,研究人员采取了多种策略,其中包括利用知识图谱作为外部信息源。知识图谱通过将信息…

25.哀家要长脑子了---哈希表

1.525. 连续数组 - 力扣(LeetCode) 在我对通义千问的一番折磨下,终于弄清楚一点点了。哈希表存储前缀和数组值 用一个counter来记录nums中0、1数量差值的变化。 哈希表map存储某个特定的counter值首次出现的位置。counter的计算:…

[redis] redis为什么快

1. Redis与Memcached的区别 两者都是非关系型内存键值数据库,现在公司一般都是用 Redis 来实现缓存,而且 Redis 自身也越来越强大了!Redis 与 Memcached 主要有以下不同: (1) memcached所有的值均是简单的字符串,red…

13 【PS作图】人物绘画理论-脸型

三庭五眼 三庭:脸的长度比例 (1)发际线到眉毛 (2)眉毛到鼻底 (3)鼻底到下巴 三个部分大致为三等分 五眼:脸的宽度比例 以眼睛长度为单位,把脸的宽度分成五等分&#x…

STM32入门_江协科技_3~4_OB记录的自学笔记_软件安装新建工程

3. 软件安装 3.1. 安装Keil5 MDK 作者的资料下载的连接如下:https://jiangxiekeji.com/download.html#32 3.2. 安装器件支持包 因为新的芯片层出不穷,所以需要安装Keil5提供的器件升级版对软件进行升级,从而支持新的芯片;如果不…

Day 41 343.整数拆分 96.不同的二叉搜索树

整数拆分 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2输出: 1解释: 2 1 1, 1 1 1。 示例 2: 输入: 10输出: 36解释: 10 3 3 4, 3 3 4 36。说明: 你可以假设 …

234234235

c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话: 知不足而奋进,望远山而前行&am…

Python ArcPy批量将大量栅格文件的投影坐标系转为地理坐标系

本文介绍基于Python语言中的ArcPy模块,批量将多个遥感影像由投影坐标系转为地理坐标系的方法。 在之前的文章中,我们介绍过将单独1景遥感影像的投影坐标系转为地理坐标系的方法,大家可以参考文章投影坐标系转为地理坐标系:GDAL命令…

分布式与一致性协议之ZAB协议(四)

ZAB协议 ZooKeeper是如何选举领导者的。 首先我们来看看ZooKeeper是如何实现成员身份的? 在ZooKeeper中,成员状态是在QuorumPeer.java中实现的,为枚举型变量 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING }其实&…