【统计推断】-01 抽样原理之(六):三个示例

目录

  • 一、说明
  • 二、处理有限的、大尺度的母体抽样
  • 三、非参数的估计
  • 四、连续母体抽样技巧--分箱

一、说明

   对于抽样问题,前几期文章都是理论探讨。本篇给出若干示例,展现具体的情况下,面对数据,如何给出处理策略。

二、处理有限的、大尺度的母体抽样

   【问题1】一所大学有3000名男生,身高服从均值为68.8英寸,标准差为3.0英寸的正态分布。设计抽样为80组样本,每组25名学生。
问题:1)有放回抽样。2)无放回抽样。问抽样均值抽样的均值和标准差是多少?
分析:抽样分布的空间:
   在有放回抽样中,样本分布的抽样组数量是 300 0 2 5 3000^25 300025,显然数量庞大。
   在不放回抽样中,样本分布的抽样组数量是 C 3000 25 C_{3000}^{25} C300025,显然数量庞大。
   因此,大数定律成立。
   无论是有放回抽样中,还是不放回抽样中,抽样分布的样本数量远远高于80,因此,真实的的抽样分布无法获得,只能获得经验的抽样分布。
   1)对于有限母体,无放回抽样,以下公式成立
在这里插入图片描述
μ x ˉ = μ = 68.0 \mu_{\bar{x}}=\mu=68.0 μxˉ=μ=68.0
σ x ˉ = σ N = σ N N p − N N p − 1 = 3 25 3000 − 25 3000 − 1 = 0.6 \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}}=\frac{\sigma}{\sqrt{N}}\sqrt{\frac{N_p-N}{N_p-1}}=\frac{3}{\sqrt{25}}\sqrt{\frac{3000-25}{3000-1}}=0.6 σxˉ=N σ=N σNp1NpN =25 330001300025 =0.6
2)对于有限母体,有放回抽样,以下公式成立
μ x ˉ = μ \mu_{\bar{x}}=\mu μxˉ=μ
σ x ˉ = σ N \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}} σxˉ=N σ
μ x ˉ = μ = 68.0 \mu_{\bar{x}}=\mu=68.0 μxˉ=μ=68.0; σ x ˉ = 4 25 = 0.6 \sigma_{\bar{x}}=\frac{4}{\sqrt{25}}=0.6 σxˉ=25 4=0.6

   结论:
   1)对于大容量的有限母体,因为抽样分布过于庞大,可以按无限母体处理。
   2)对于大容量的抽样分布,有放回和无放回抽样区别不大。
   3)上述样本均值的经验分布,可近似看成均值为68.8英寸,标准差为0,6的正态分布。

三、非参数的估计

   注意,抽样的参数估计并不是我们最后的目的,最后的目的是在样本参数估计的基础上,发掘出更多的特点。

   【问题2】在问题1中,在80个样本中,能够找到几个样本抽样,它们的特征是1)均值在66.8英寸和68.3英寸之间 2)均值小于66.4英寸。

   【分析】
   抽样分布的整体很大,因此无法穷举,因此,抽样分布也是一个估计而已。
通过上述计算,均值抽样满足 N ( 68 , 0. 6 2 ) N(68,0.6^2) N(68,0.62)的正态分布。
在这里插入图片描述
   因此,按照抽样分布中,均值抽样的样本落在【66.8,68.3】的概率是: P ( 66.8 ⩽ x ⩽ 68.3 ) P(66.8\leqslant x \leqslant 68.3) P(66.8x68.3)
   以上是个非标准的,转化成标准正态分布后,可以查表得到P;通过s=P*80可以得到满足以上所条件的抽样数s。

【解决】样本标准化,一般指向以下步骤:
z = X ˉ − μ X ˉ σ X ˉ = X ˉ − 68.0 0.6 z=\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}=\frac{\bar{X}-68.0}{0.6} z=σXˉXˉμXˉ=0.6Xˉ68.0
66.8 的标准值 = 66.8 − 68.0 0.6 = − 2 66.8的标准值=\frac{66.8-68.0}{0.6}=-2 66.8的标准值=0.666.868.0=2
68.3 的标准值 = 68.4 − 68.0 0.6 = 0.5 68.3的标准值=\frac{68.4-68.0}{0.6}=0.5 68.3的标准值=0.668.468.0=0.5
从网上随便查找一个标准正态表:
在这里插入图片描述
   P(-2, 0.5) = 0.6915 - (1-0.9772) = 0.6687
s = 80*0.6687 = 53.49
   即在80组抽样中,估计有53个均值在66.8-68.3之间。

四、连续母体抽样技巧–分箱

   在数据分析过程中,常常遇到母体是连续分布的情况;按照理论上说,抽样数据在任意区间都应该是无限的,那么如何抽样?答案是用分箱技术,所谓分箱技术,就是将连续无限集合划分成有限集合的过程。这个过程当然是近似的。
在这里插入图片描述

   下面举出一个具体示例。
   对XYZ大学的100个男生进行抽样。这里母体就是有限100;对母体进行分箱后数据如下:
在这里插入图片描述

  1. 以下是对分箱后的均值计算方法
    在这里插入图片描述
    在没有任何信息的情况,均值计算如下:
    X ˉ = 0.05 × 61 + 0.18 × 64 + 0.42 × 67 + 0.27 × 70 + 0.08 × 73 0.05 + 0.18 + 0.42 + 0.27 + 0.08 = 67.45 \bar{X}=\frac{0.05\times 61+ 0.18\times64+ 0.42\times67+0.27\times70+0.08\times73}{0.05+0.18+0.42+0.27+0.08}=67.45 Xˉ=0.05+0.18+0.42+0.27+0.080.05×61+0.18×64+0.42×67+0.27×70+0.08×73=67.45

2)在有如下抽样后,如何处理?
在这里插入图片描述
1)均值:通过【 67.75,66.25,67.75,69.25,67.0,66.25,65.5,68.5,68.5,67.0,66.25,68.5,68.5,67.75,67.0,66.25,69.25,69.25,68.5,66.25,69.25,64,67.75,69.25,66.25,67.0,70.0,68.5,68.5,65.5】输入python代码。很容易得到。

import statistics
data = [67.75,66.25,67.75,69.25,67.0,66.25,65.5,68.5,68.5,67.0,66.25,68.5,68.5,67.75,67.0,66.25,69.25,69.25,68.5,66.25,69.25,64,67.75,69.25,66.25,67.0,70.0,68.5,68.5,65.5]
mean = statistics.mean(data)
dev  = statistics.pstdev(data)

mean = 67.57

2)标准差
在这里插入图片描述
可以得到:
dev=1.40

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/671774.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++反汇编——多态,面试题01

文章目录 1.C的三大特性1.1封装1.2继承1.3多态1.3.1 虚函数1.3.2 多态代码反汇编分析。反汇编分析1——基类指针指向子类对象,构造过程。反汇编分析2——基类指针指向子类对象,调用虚函数getPrice()过程。反汇编分析3——基类对象,调用虚函数…

WebRTC实现多人通话-Mesh架构【保姆级源码教程】

一、Mesh架构 WebRTC(Web Real-Time Communications)中的Mesh架构是一种将多个终端之间两两进行连接,形成网状结构的通信模式。以下是关于WebRTC的Mesh架构的详细解释: 基本概念:在Mesh架构中,每个参与者…

html实现网页插入音频

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文主要介绍html中 如何插入音乐和视频 视频插入 标签:<video></video> 兼容格式:mp4,因为别的浏览器都有不兼容的格式&#xff0c;唯一对mp4全都兼容。所以尽量使用mp4格式。 属性: 属性属性值…

学生管理系统初级

根据题目要求生成大纲 总结: 1.在书写时&#xff0c;考虑到了书写时id可是是abc... 类型是String&#xff0c;但在根据id获取集合中元素时 list.get() &#xff0c;get&#xff08;&#xff09;里面是int类型。 2.在书写还有一点功能并不完全&#xff0c; 2.1查找时是打印所有…

Open CASCADE学习|三重正交标架法则

三重正交标架&#xff08;Trihedron&#xff09; 定义:三重正交标架是在三维空间中定义的一个坐标系&#xff0c;由三个互相垂直的向量构成。这些向量分别是&#xff1a; 切线向量&#xff08;Tangent Vector&#xff09; - 表示曲线在某一特定点处的切线方向。 主法线向量&…

代码随想录算法训练营第十三天:树的认知(补五一)

代码随想录算法训练营第十三天&#xff1a;树的认知&#xff08;补五一&#xff09; ‍ 二叉树的递归遍历 #算法公开课 《代码随想录》算法视频公开课 ****(opens new window)****​ &#xff1a;​每次写递归都要靠直觉&#xff1f; 这次带你学透二叉树的递归遍历&#xf…

cmake进阶:文件操作之写文件

一. 简介 cmake 提供了 file() 命令可对文件进行一系列操作&#xff0c;譬如读写文件、删除文件、文件重命名、拷贝文件、创建目录等等。 接下来 学习这个功能强大的 file() 命令。 本文学习 CMakeLists.txt语法中写文件操作。 二. cmake进阶&#xff1a;文件操作之写文件…

基于家政小程序的个性化家政服务研究

基于家政小程序的个性化家政服务研究&#xff0c;是近年来随着移动互联网技术的快速发展和人们生活品质的提高而兴起的一个热门话题。以下是对该领域的研究探讨&#xff1a; 一、引言 随着现代生活节奏的加快&#xff0c;家政服务已成为越来越多家庭不可或缺的一部分。然而&a…

​​【收录 Hello 算法】3.3 数字编码

目录 3.3 数字编码 3.3.1 原码、反码和补码 3.3.2 浮点数编码 3.3 数字编码 Tip 在本书中&#xff0c;标题带有 * 符号的是选读章节。如果你时间有限或感到理解困难&#xff0c;可以先跳过&#xff0c;等学完必读章节后再单独攻克。 3.3.1 原码、反码和补码 在…

BetterMouse for Mac激活版:鼠标增强软件

BetterMouse for Mac是一款鼠标增强软件&#xff0c;旨在取代笨重的、侵入性的和耗费资源的鼠标驱动程序&#xff0c;如罗技选项。它功能丰富&#xff0c;重量轻&#xff0c;效率优化&#xff0c;而且完全隐私安全&#xff0c;试图满足你在MacOS上使用第三方鼠标的所有需求。 B…

Dell EMC Storage Unity: Remove/Install Memory Module

SP A 一个内存故障 点击system view -> Enclosures->Top查看 再次查看Alert&#xff0c; 确认内存出现问题 进入Service &#xff0c; 将SP A置为service状态 移出SP A &#xff0c;进行内存更换 更换完内存后&#xff0c;将SP A插入设备&#xff0c;并进行线缆连接 进入…

视频素材哪个软件好用?8个短视频素材高清无水印

在今日这个视觉表现至关重要的时代&#xff0c;获取合适的视频素材成为制作任何类型视频内容的基石。从企业宣传片到社交媒体短视频&#xff0c;高质量的视频素材能够显著提升内容的吸引力和专业度。这里列出了一些全球顶尖的视频素材平台&#xff0c;每一个都能为您的视频项目…