大模型改变了哪些工作方式?

大模型的崛起深刻改变了我们的工作方式。如今,许多行业已广泛应用大型机器学习模型,实现了自动化数据处理、智能决策和高效分析。这一变革不仅释放了大量人力资源,使得人们能够专注于更具创造性的任务,还大幅提升了工作效率和准确性。大模型的应用正逐渐渗透到各个领域,推动着工作方式的创新与升级,开启了一个更加智能化、高效化的新时代。

大型模型在内容创作领域的广泛应用

大型模型在内容创作领域发挥着举足轻重的作用,显著提升了内容生产的效率并降低了成本。这种影响在新闻撰写、视频编辑以及音乐制作等多个方面均表现得尤为突出。

在新闻撰写领域,大型模型的应用正逐渐改变着传统新闻产业的工作模式。通过利用这些先进的机器学习模型,新闻机构能够自动化处理海量数据,并迅速生成新闻草稿。这不仅显著提升了撰写速度,还大大减轻了记者的工作负担,使他们有更多精力专注于深度报道和调查性新闻。同时,这些模型还能协助编辑快速核实事实,进一步提升报道的准确性。

在视频编辑方面,大型模型同样带来了颠覆性的变革。它们能够自动识别视频中的关键内容,辅助编辑进行精准剪辑,甚至能够根据预设的主题或风格自动生成编辑方案。这种技术的应用不仅提高了制作效率,还使得个性化内容的创作变得更加轻松且成本效益高。

音乐制作领域也深受大型模型的影响。这些模型能够分析大量音乐作品,学习其结构、旋律和和声等要素,从而辅助音乐家创作出新颖的作品。它们还能模拟各种乐器的声音,为音乐家提供一个虚拟的音乐创作环境。这不仅为音乐家提供了无尽的创作灵感,还大幅降低了音乐制作的成本,使得高质量音乐的制作更加民主化和普及化。

除此之外,大型模型还在内容分发和优化方面发挥着重要作用。通过分析用户数据,这些模型能够帮助内容创作者和媒体公司更深入地了解观众的喜好,从而制定更加精准的内容策略和分发计划。这种数据驱动的方法不仅提高了内容的针对性和受众吸引力,还增强了用户参与度,为内容创作者和媒体公司带来了更高的收益。

大型模型在数据分析领域的深入应用

在市场研究和商业智能领域,大型模型正引领着一场革命性的变革。这些模型能够在无需复杂建模的情况下,高效地执行各种数据分析任务,从而极大地提升了企业识别市场趋势和消费者行为模式的能力,进而优化其营销策略和资源分配。

01

市场趋势分析

大型模型能够处理和分析海量的数据集,包括社交媒体动态、在线消费行为、市场调研报告等,为企业提供深入的市场洞察。通过学习和识别数据中的模式和趋势,这些模型能够帮助企业迅速把握市场的变化,如消费者需求的转移、新兴市场的涌现以及竞争对手的策略调整等。

02

在消费者行为分析

大型模型的应用为企业提供了更加深入的消费者洞察。通过分析消费者的购买历史、在线行为和反馈等信息,这些模型能够揭示特定消费群体的偏好和需求。这种深入的分析不仅有助于企业制定个性化的营销策略,还能提高目标广告和产品推荐的精准度,从而增加销售额和客户满意度。

03

资源分配和优化

基于对市场和消费者行为的深入洞察,企业能够更加精准地制定预算和资源分配计划。例如,它们可以利用这些模型来确定哪些市场领域最具投资价值,或者哪些营销渠道最为有效,从而确保资源被投入到最具回报潜力的领域。

04

预测市场变化和风险评估

通过对历史数据和当前市场条件的分析,这些模型能够预测未来的市场走势,帮助企业在变化莫测的市场环境中保持竞争优势。此外,它们还能识别潜在的市场风险和不确定性因素,为企业制定风险应对策略提供有力支持。

大模型在创新研发方面的应用

大模型在创新研发领域正发挥着日益重要的作用,为科研人员和企业提供了强大的工具,以加速新产品和新技术的开发过程。这些模型通过深度学习和大数据分析,能够发现新的科学规律、预测实验结果,并优化研发流程,从而推动创新的快速发展。

在药物研发领域,大模型的应用尤为突出。通过训练在大量医学文献和实验数据上的模型,研究人员能够更准确地预测药物与生物体之间的相互作用,以及药物可能产生的副作用。这不仅减少了实验动物的使用,还加速了候选药物的筛选和测试过程。同时,大模型还能辅助科研人员设计和优化药物的化学结构,以提高药物的疗效和降低其潜在的毒性。

在材料科学领域,大模型同样展现出了巨大的潜力。通过对材料成分、结构和性能之间关系的深度学习,模型能够预测新材料的性能,并指导材料的合成和改性。这有助于科研人员快速发现具有优异性能的新材料,为工业生产和科技进步提供有力支持。

此外,大模型还在人工智能算法和技术的创新中发挥着关键作用。通过不断学习和优化自身的结构和参数,这些模型能够推动人工智能技术的不断进步,为各个行业提供更高效、更智能的解决方案。

然而,大模型在创新研发方面的应用也面临着一些挑战。首先,数据的质量和多样性对于模型的训练至关重要。缺乏足够的高质量数据可能导致模型性能不佳或产生误导性的结果。其次,模型的复杂性和计算资源的需求也是制约其应用的关键因素。随着模型规模的不断扩大,所需的计算资源和时间成本也在不断增加。

为了克服这些挑战,科研人员和企业需要不断探索新的数据获取和处理方法,以提高数据的质量和多样性。同时,他们还需要优化模型的结构和算法,以降低计算资源的需求并提高模型的性能。此外,加强跨学科合作和人才培养也是推动大模型在创新研发领域应用的重要途径。

大模型对未来工作方式的展望

随着大模型技术的不断发展和普及,未来的工作方式将发生深刻变革。大模型将成为各个行业中不可或缺的智能化工具,引领一场效率提升、创新加速和劳动解放的革命。

首先,大模型的广泛应用将大幅提高工作效率。自动化处理数据、智能分析和决策将成为常态,从而释放出大量的人力资源。人们将不再被繁琐的数据处理和分析任务所束缚,可以将更多的时间和精力投入到更具创造性和价值的工作中。

其次,大模型将推动创新研发的加速。科研人员和企业将能够利用大模型发现新的科学规律、预测实验结果,并优化研发流程。这将缩短新产品和新技术的开发周期,加速科技成果的转化和应用。

此外,大模型还将改变人们的工作方式和职业结构。随着自动化和智能化水平的提高,一些传统的重复性、低附加值的工作将被机器所取代。但同时,也会催生出新的职业领域和工作机会,如数据科学家、AI工程师等。人们将需要不断学习和更新自己的技能,以适应这种新的工作环境。

然而,大模型的发展也带来了一些挑战和问题需要解决。例如,如何确保模型的安全性和隐私保护?如何防止模型被滥用或误用?如何确保模型的公平性和透明度?这些问题需要我们在推进大模型应用的同时,加强相关法规的制定和执行,并加强跨学科的研究和合作。

大模型对未来工作方式的影响将是深远的。它将推动工作效率的提升、创新研发的加速和职业结构的变革。但同时,我们也需要关注并解决与之相关的挑战和问题。只有这样,我们才能充分利用大模型的潜力,为未来的工作和生活创造更多的价值和可能性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/674643.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows系统和unbtun系统连接usb 3.0海康可见MVS和红外艾睿相机

一.海康可见USB3.0工业面阵相机 海康usb相机需要去海康官网上下载对应系统的MVS客户端及SDK开发包 海康机器人-机器视觉-下载中心 选择Windows系统和unbtun(我是linux aarch64,所以选择了对应压缩包解压) Windows系统 1.双击安装包进入安装界面&…

GEE数据集——DeltaDTM 全球沿海数字地形模型数据集

DeltaDTM 全球沿海数字地形模型产品 简介 DeltaDTM 是全球沿岸数字地形模型(DTM),水平空间分辨率为 1 弧秒(∼30 米),垂直平均绝对误差(MAE)为 0.45 米。它利用 ICESat-2 和 GEDI …

【算法】滑动窗口——最大连续1的个数

本篇文章讲的是“最大连续1的个数”这道题,从最开始的简单暴力到用滑动窗口算法实现解题的思路历程,有需要借鉴即可。 目录 1.题目2.暴力求解3.滑动窗口解法3.1优化一:end重返start优化,end指针不回退3.2优化二:某一st…

找不到模块“vue-router”。你的意思是要将 moduleResolution 选项设置为 node,还是要将别名添加到 paths 选项中?

在tsconfig.app.json中添加,记得一定是 tsconfig.app.json 中,如添加到 tsconfig.node.json 还是会报错的 哈哈哈哈,不瞒你们,我就添加错了,哈哈哈。所以这也算写一个demo提醒自己 "compilerOptions": {&qu…

excel如何将多列数据转换为一列?

这个数据整理借用数据透视表也可以做到: 1.先将数据源的表头补齐,“姓名” 2.点击插入选项卡,数据透视表,在弹出对话框中,数据透视位置选择 现有工作表,(实际使用时新建也没有问题)…

frp内网穿透服务搭建与使用

frp内网穿透服务搭建与使用 1、frp简介 frp 是一个专注于内网穿透的高性能的反向代理应用,支持 TCP、UDP、HTTP、HTTPS 等多种协议。 可以将内网服务以安全、便捷的方式通过具有公网 IP 节点的中转暴露到公网。frp工作原理 服务端运行,监听一个主端口…

C#修改默认参数settings文件

右击项目在设置中进行修改: 千万不要在这里改。 如果要在自己的项目里添加这个文件,首先新建个文件夹,然后添加.setting文件,然后再像上面说的那样添加属性。

【刷题篇】双指针(一)

文章目录 1、移动零2、复写零3、快乐数4、盛最多水的容器 1、移动零 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 class Solution { pub…

免收隔夜费的外汇平台特点与选择

外汇交易是一种全球范围内的投资活动,参与者包括银行、机构投资者、交易商和个人交易者。在外汇交易中,隔夜费(也称为掉期费或展期费)是当持仓过夜时,因货币对利率差异而产生的费用。这种费用对一些交易者,…

asp.net成绩查询系统

说明文档 运行前附加数据库.mdf(或sql生成数据库) 主要技术: 基于asp.net架构和sql server数据库 功能模块: asp.net成绩查询系统 学生功能有查看成绩和修改账号密码等 后台管理员可以进行用户管理 管理员添加管理员查询注…

[译]Elasticsearch _source Doc_values And Store Performance

原文地址 https://sease.io/2021/02/field-retrieval-performance-in-elasticsearch.html 在这篇博文中,我想从性能的角度探讨 Elasticsearch 为我们存储字段和查询时检索字段提供了哪些可能性。 事实上,Lucene(Elasticsearch 和 Solr 构建的…

TriCore TC162 Archievture Volume 笔记

说明 本文是 英飞凌 架构文档 TriCore TC162P core archiecture Volume 1 of 2 (infineon.com) 的文笔,稍作整理方便查阅,错误之处,还请指正,谢谢 :) 1. Architecture 2. General Purpose & System Register 名词列表&#…