AGI|基于LangChain实现的三种高级RAG检索方法

一、前言

RAG(Retrieval-Augmented Generation)检索增强生成,是现如今基于企业私域知识的问答应用所使用的主流技术之一。相较于重新训练基于私域知识的大模型来说,RAG没有额外的预训练成本,且回答效果与之相当。

但在实际应用场景中,RAG所面临最大的问题是LLM的上下文长度限制。企业私域知识文本的数量十分庞大,不可能将其全部放在模型的prompt中,即使现在各类模型已经将上下文token从年初的2k、4k扩充到了128k、192k,但是这可能也就是一份合同、一份标书的长度。因此,如何减少传递给模型的内容数量且同时提高内容质量,是提升基于RAG的AI应用回答准确度的一个重要方法。

本篇文章将基于LangChain实现三种高级检索方法,句子窗口检索和自动合并检索旨在改善RAG流程的召回过程中存在的信息残缺的问题,而多路召回检索则保证了在多个文档中检索召回的准确性。

二、先验知识

●RAG简要流程

加载文档——切分划片——嵌入为向量表示——存入数据库

向量化问题——向量召回文档——合并放入Prompt——LLM生成答案

三、句子窗口检索

(一)概念

在文档进行切片工作后,文档被分为若干个Langchain自定义的Document对象,该对象有两个属性,一是page_content即该切片的文本内容,二是meta_data即有关该切片的一些信息和可自定义封装进入的信息。

句子窗口检索方法,将每个切片的相邻切片的内容封装在切片的meta_data中。在检索和召回过程时,根据命中文档的meta_data可获得此段落的上下文信息,并将其封装进入命中文档的page_content中。组合完成的文档列表即可作为prompt交付给大模型生成。

在实际问答任务中,我们建议使用切片器将文档切分为较短的分片,或使用依据标点符号进行切分的切片器。保证整片文档拥有较细的颗粒度。同时在封装和召回阶段,适当扩大窗口大小,保证召回段落的完整性。

(二)BERT

(1)元数据封装

def metadata_format(self, ordered_text, **kwargs):
count = kwargs.get("split_count", 1)
fori, documentinenumerate(ordered_text):
ifi > 0:
document.metadata['previous_page'] = ordered_text[i-count].page_content
else:
document.metadata['previous_page'] = ''ifi < len(ordered_text) - 1:
document.metadata['next_page'] = ordered_text[i+count].page_content
else:
document.metadata['next_page'] = ''
returnordered_text

(2)数据重构

def search_and_format(self, databases, query, **kwargs):
top_documents = []
fordb in databases:
top_documents.append(db.similarity_search_with_score(query))
docs = []
fordoc, _ in top_documents:
doc.page_content = doc.metadata.get("previous_page") + doc.page_content + doc.metadata.get("next_page")
docs.append(doc)
returndocs

(3)调用示例伪代码

#load document
......#split
......
#use smartvision sdk to format
sentence_window_retrival = SentenceWindow()
formatted_documents = sentence_window_retrival.metadata_format(documents, split_count=2)#embedding 
......#load inlocalvector db
......#use smartvision sdk to dosearch and multiple recall
databases = [db]
query = "烟草专卖品的运输"
top_documents = sentence_window_retrival.search_and_format(databases, query)
print(top_documents)

四、自动合并检索

(一)概念

自动合并检索方法,实现方法源自Llamaindex所封装的自动合并检索,但RAG全流程需要制定一套准确的规范,因此在用户文档完成读取和切片工作后,所得到的Langchain格式的Document对象需转化为Llamaindex定义的Document对象,便可通过Llamaindex的自定义算法自动划分整个切片列表的子节点和父节点,最后鉴于规范再重新转化为Langchain格式的Document对象,并将父节点信息、深度信息等封装进每个节点。

在检索阶段,召回最相关的若干个节点,遍历这些节点和附加信息,如若超过K个节点同时属于同一个节点(这里的K为用户自定义阈值,通常为一个节点所有子节点的半数)则执行合并该父节点下属所有子节点,即返回整个父节点内容。这使我们能够将可能不同的较小上下文合并到一个可能有助于综合的更大上下文中。

(二)代码实现和调用

(1)元数据封装

defauto_merge_format(documents, **kwargs):
ifdocuments isNone:
raiseValueError('documents is required')
formatted_documents = []
doc_text = "\n\n".join([d.page_content ford indocuments])
docs = [Document(text=doc_text)]
node_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=kwargs.get("pc_chunk_size", [2048, 512, 128]),chunk_overlap=kwargs.get("pc_chunk_overlap", 10))
nodes = node_parser.get_nodes_from_documents(docs)
leaf_nodes = get_leaf_nodes(nodes)
root_nodes = get_root_nodes(nodes)
middle_nodes = get_middle_node(nodes, leaf_nodes, root_nodes)
root_context_dict = {}
forroot_node innodes:
root_context_dict[root_node.node_id] = root_node.get_content()fornode innodes:
ifnode.parent_node:
node_id = node.node_id
root_node_id = node.parent_node.node_id
root_node_content = root_context_dict.get(node.parent_node.node_id)
root_node_child_count = 0
forparent_node inroot_nodes + middle_nodes:
ifparent_node.node_id == node.parent_node.node_id:
root_node_child_count = len(parent_node.child_nodes)
break
depth = 2ifnode inmiddle_nodes else3
child_count = len(node.child_nodes) ifnode.child_nodes isnotNoneelse0
document = langchain.schema.Document(page_content=node.get_content(),metadata={"node_id": node_id, "root_node_id": root_node_id, "root_node_content": root_node_content, "root_node_child_count": root_node_child_count, "depth": depth, "child_count": child_count})
formatted_documents.append(document)
returnformatted_documents

(2)数据重构

defsearch_and_format(self, databases, query, **kwargs):
top_documents = []
fordb indatabases:
top_document = db.similarity_search_with_score(query)
top_documents.append(top_document)
leaf_nodes = [doc fordoc, _ intop_documents]
returndo_merge(leaf_nodes, **kwargs)defgroup_nodes_by_depth(nodes, depth):
return[node fornode innodes ifnode.metadata.get("depth") == depth]defprocess_group(nodes, threshold):
grouped_by_root_id = {}
fornode innodes:
root_id = node.metadata.get("root_node_id")
grouped_by_root_id.setdefault(root_id, []).append(node)merge_context = []
forgroup ingrouped_by_root_id.values():
node_count = len(group)
child_count = group[0].metadata.get("root_node_child_count")
ifnode_count / child_count >= threshold:
merge_context.append(langchain.schema.Document(
page_content=group[0].metadata.get("root_node_content")
))
else:
fordocument ingroup:
merge_context.append(document)
returnmerge_contextdefdo_merge(nodes, **kwargs)-> List[langchain.schema.Document]:
threshold = kwargs.get("threshold", 0.5)
leaf_nodes = group_nodes_by_depth(nodes, 3)
middle_nodes = group_nodes_by_depth(nodes, 2)
leaf_merge_context = process_group(leaf_nodes, threshold)
middle_merge_context = process_group(middle_nodes, threshold)
merge_content = leaf_merge_context + middle_merge_context
returnmerge_contentdefget_middle_node(nodes, leaf_nodes, root_nodes):
middle_node = []
fornode innodes:
ifnode notinleaf_nodes andnode notinroot_nodes:
middle_node.append(node)
returnmiddle_node

(3)调用示例伪代码

#load document
......#split
......#use smartvision sdk to format
auto_merge_retrival = AutoMergeRetrieval()
formatted_documents = auto_merge_retrival.metadata_format(documents,
pc_chunk_size=[1024, 128, 32],
pc_chunk_overlap=4)
#embedding 
......#load inlocalvector db
......#use smartvision sdk to dosearch and multiple recall
top_documents = auto_merge_retrival.search_and_format(databases, query, threshold=0.5)
print(top_documents)

五、多路召回检索

(一)概念

多路召回检索方法,在元数据封装环节并未做任何操作,而在检索阶段他允许用户上传多个数据集或不同类型的向量数据库作为检索对象,以适应用户私域知识库文档类型不同,文档数量庞大的问题。从多个数据源检索得到文档列表,而后通过rerank模型对文档与问题的相关性进行评分,筛选出大于一定分值的文档,组合成为prompt。

由此可见,多路召回检索在数据源广而杂的情况下,富有更好的效果。此外,rerank模型虽能进行再次的重排以提高准确性,但是在牺牲速度和效率的前提下进行的,因此需充分考虑这个问题。

(二)代码实现

(1)元数据封装

defmetadata_format(self, ordered_text, **kwargs):
"""
默认rag,不做任何处理
"""
returnordered_text

(2)数据重构

defsearch_and_format(self, databases, query, **kwargs):
top_documents = []
result_data = []
fordb indatabases:
top_document = db.similarity_search_with_score(query)
top_documents.append(top_document)
pairs = [[query, item.page_content] foritem intop_documents]
withtorch.no_grad():
rerank_tokenizer = AutoTokenizer.from_pretrained(RERANK_FILE_PATH)
inputs = rerank_tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
rerank_model = AutoModelForSequenceClassification.from_pretrained(RERANK_FILE_PATH)
scores = rerank_model(**inputs, return_dict=True).logits.view(-1, ).float()
fori, score inenumerate(scores):
data = {
"text": top_documents[i].page_content,
"score": float(score)
}
result_data.append(data)
returnresult_data

六、结语

本文提供的三种高级RAG检索方法,但仅改善了流程中检索召回环节的信息残缺问题,实质上RAG全流程均存在各种优化方法,但最有效的方法仍是改进或提供新的召回方式。

总结以上三种方法,均需要重点注意切片器的选用并控制切片大小,过大导致上下文长度过长,且有研究表明过长的prompt易使大模型忽略的中间部分的信息。过短则导致关键信息残缺,无法为大模型提供有效的上下文。因此开发者需根据文档类型和结构,谨慎选择并适当调节优化。

神州数码集团的神州问学平台不仅提供了本文所述的三种高级检索方法的SDK,而且我们的开发团队正不断探索和研发新的、更高效的检索技术。我们致力于满足客户对于多样化私域知识库结构的需求,以实现更精准、更全面的搜索体验。同时,我们也欢迎您体验平台并提供宝贵意见。

作者:孙泽文| 神州数码云基地

更多AI小知识欢迎关注“神州数码云基地”公众号,回复“AI与数字化转型”进入社群交流

版权声明:文章由神州数码武汉云基地团队实践整理输出,转载请注明出处。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/674817.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动化运维管理工具----------Ansible模块详细解读

目录 一、自动化运维工具有哪些&#xff1f; 1.1Chef 1.2puppet 1.3Saltstack 二、Ansible介绍 2.1Ansible简介 2.2Ansible特点 2.3Ansible工作原理及流程 2.3.1内部流程 2.3.2外部流程 三、Ansible部署 3.1环境准备 3.2管理端安装 ansible 3.3Ansible相关文件 …

目前最便宜的VPS多少钱一个月?

目前最便宜的VPS一个月的价格在5美元左右&#xff0c;换算成人民币约为35元。 VPS服务器的配置、性能、所在地区都是影响其价格的因素&#xff0c;价格与性能呈正相关&#xff0c;也有的廉价VPS的服务商会提供性能低的配置&#xff0c;让用户可以进行简单的网站托管或开发环境…

鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽

进程间为何要通讯 ? 鸿蒙内核默认支持 64个进程和128个任务&#xff0c;由进程池和任务池统一管理.内核设计尽量不去打扰它们&#xff0c;让各自过好各自的日子&#xff0c; 但大家毕竟在一口锅里吃饭&#xff0c; 不可能不与外界联系&#xff0c; 联系就得有渠道&#xff0c…

ZIP压缩输出流(将ZIP文件解压)

文章目录 前言一、ZIP压缩输出流是什么&#xff1f;二、使用介绍 1.使用方法2.实操展示总结 前言 该篇文章相对应的介绍如何使用java代码将各种文件&#xff08;文件夹&#xff09;从ZIP压缩文件中取出到指定的文件夹中。解压流将ZIP文件中的文件以条目的形式逐一读取&#xff…

UE5自动生成地形二:自动生成插件

UE5自动生成地形二&#xff1a;自动生成插件 Polycam使用步骤 本篇主要讲解UE5的一些自动生成地形的插件 Polycam 此插件是通过现实的多角度照片自动建模生成地形数据&#xff0c;也是免费的。这里感谢B站up主古道兮峰的分享 Polycam网站 插件下载地址 插件网盘下载 提取码&a…

研发效能 | Jacoco dump基于k8s的实现

问题描述 总所周知&#xff0c;jacoco的dump操作如果是使用server模式只需要使用以下命令就能获取到 exec 文件。 java -jar jacococli.jar dump --address 192.169.110.1 --port 6300 --destfile ./jacoco-demo.exec 如果是非 k8s 的集群&#xff0c;也只需要遍历执行这条命…

C语言栈的含义与栈数据操作代码详解!

引言&#xff1a;在本篇博客中&#xff0c;我们将学到数据结构——栈&#xff0c;讲到栈的含义与关于栈的数据操作代码。栈可以在顺序表、双向链表以及单链表的基础上实现&#xff0c;而于本篇博客中&#xff0c;我们选择在顺序表的基础上实现栈。 更多有关C语言和数据结构知识…

硬件设计细节1-缓冲驱动器使用注意事项

目录 一、缓冲驱动器二、实例分析1.硬件结构2.问题描述3.原因分析4.原因定位 三、结论 一、缓冲驱动器 缓冲驱动器通常用于隔离、电平转换等应用场景。在使用时&#xff0c;需要关注的点较多&#xff0c;如电平范围、频率范围、延时、控制方式、方向以及输入输出状态。通常&am…

大模型爱好者的福音,有了它个人电脑也可以运行大模型了

GPT4ALL是一款可以运行在个人电脑上的大模型系统&#xff0c;不需要GPU即可运行&#xff0c;目前支持mac&#xff0c;linux和windows系统。 什么是GPT4ALL&#xff1f; 不论学习任何东西&#xff0c;首先要明白它是个什么东西。 Open-source large language models that run …

硬盘惊魂!文件夹无法访问怎么办?

在数字时代&#xff0c;数据的重要性不言而喻。然而&#xff0c;有时我们会遇到一个令人头疼的问题——文件夹提示无法访问。当你急需某个文件夹中的文件时&#xff0c;却被告知无法打开&#xff0c;这种感受真是难以言表。今天&#xff0c;我们就来深入探讨这个问题&#xff0…

数组折半法查找数据(C语言)

一、N-S流程图&#xff1b; 二、运行结果&#xff1b; 三、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h> //定义数据&#xff1b; #define N 15int main() {//初始化变量值&#xff1b;int a[N], i, top, bott, loca, flag 1, sign, numb…

选择适用的无尘棉签:保障洁净生产环境下的高效擦拭

随着洁净生产条件的日益普及和无尘级别要求的提高&#xff0c;无尘擦拭用品成为广大用户追捧的必备工具。在这个领域&#xff0c;无尘棉签作为一种高效的擦拭工具&#xff0c;扮演着重要的角色。然而&#xff0c;面对市场上种类繁多的无尘棉签&#xff0c;如何选择最合适的产品…