【大模型认识】警惕AI幻觉,利用插件+微调来增强GPT模型

文章目录

  • 一. 大模型的局限
    • 1. 大模型不会计算
    • 2. 甚至明目张胆的欺骗
  • 二. 使用插件和微调来增强GPT模型
    • 1. 模型的局限性
    • 2. 插件来增强大模型的能力
    • 3. 微调技术-提高特定任务的准确性

一. 大模型的局限

1. 大模型不会计算

LLM根据给定的输入提示词逐个预测下一个词(也就是标记),从而生成回答。在大多数情况下,模型的输出是与提问相关的,并且完全可用,但是在使用语言模型时需要小心,因为它们给出的回答可能不准确。这种回答通常被称为AI幻觉。对于依赖GPT的用户来说,AI幻觉可能带来危险。你需要仔细核对并批判性地审视模型的回答。

考虑以下例子。

首先,我们让模型计算一个简单的式子:2 + 2。不出所料,它给出的答案是4。非常好!然后,我们让它计算一个复杂的式子:3695 × 123548。尽管正确答案是456509860,但模型非常自信地给出了一个错误的答案,如图。当我们要求它进行检查并重新计算时,它仍然给出了一个错误的答案。
 
在这里插入图片描述

 
只会补全文本

尽管我们可以使用插件系统向GPT添加新功能,但GPT默认不包含计算器。为了回答我们的问题,即2 + 2等于多少,GPT逐个生成每个标记。它之所以能正确回答,是因为它可能经常在训练文本中遇到2 + 2等于4。这并不能说明它会计算,只能说明它会补全文本而已。

 
犯错的原因

GPT很可能没有在其训练文本中见过太多次3695 × 123548。这就是它犯错的原因。因此,在应用程序中使用GPT时要特别小心。如果GPT犯错,那么你的应用程序可能会得到不一致的结果。

 

有趣的附带效果

请注意,在刚才的例子中,ChatGPT给出的结果接近正确答案,而不是完全随机的。这是算法的一个有趣的附带效果:尽管没有数学能力,但ChatGPT仅通过语言方法就能给出近似的估计结果。

 

2. 甚至明目张胆的欺骗

在前面的例子中,ChatGPT犯了一个错误。但在某些情况下,它甚至会故意欺骗。ChatGPT声称自己无法访问互联网。然而,如果我们坚持,就会发生有趣的事情,如图所示。

ChatGPT的意思是,它已经访问了链接。然而,这在目前绝对不可能。ChatGPT明显让用户误以为它具备其实并不具备的能力。

在这里插入图片描述

在这里插入图片描述

 

二. 使用插件和微调来增强GPT模型

1. 模型的局限性

GPT模型有一定的局限性,例如其计算能力有限。此外,它没有直接访问互联网的权限,这意味着GPT模型无法获取新信息,其知识仅限于训练数据。对于GPT-4,最后一次知识更新是在2021年9月。

它们可能会提供错误信息,甚至误导用户。总之,我们强烈推荐在创意型(或)应用程序中使用纯GPT解决方案,而不是在医疗咨询工具等真相至关重要的问答类应用程序中使用。对于这类用例,插件可能是理想的解决方案。

OpenAI已经为GPT-4引入了插件功能。这些工具让我们能够向LLM添加额外的功能。计算器就是众多工具之一,它可以帮助GPT正确回答数学问题。

 

2. 插件来增强大模型的能力

OpenAI提供的插件服务允许该模型与第三方开发的应用程序连接。这些插件使模型能够与开发人员定义的API进行交互。

插件为开发人员带来许多新的机会。想象一下,将来每家公司都可能希望拥有自己的LLM插件。就像我们今天在智能手机应用商店中看到的那样,可能会有一系列的插件集合。通过插件可以添加的应用程序数量可能是巨大的。

在其网站上,OpenAI表示可以通过插件让ChatGPT执行以下操作:

  • 检索实时信息,如体育赛事比分、股票价格、最新资讯等;
  • 检索基于知识的信息,如公司文档、个人笔记等;
  • 代表用户执行操作,如预订航班、订购食品等;
  • 准确地执行数学运算。
  • 。。。

 

3. 微调技术-提高特定任务的准确性

微调可以提高现有模型在特定任务上的准确性。

微调过程涉及使用特定的一组新数据重新训练现有的GPT模型。新模型专为特定任务而设计,这个额外的训练过程让模型能够调节其内部参数(how),以适应给定的任务。

经过微调的模型应该在该任务上表现得更好。比如,采用金融文本数据进行微调的模型应该能够更好地回应针对该领域的查询并生成相关性更强的内容

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/679012.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Dynamic Extraction of Subdialogues for Dialogue Emotion Recognition

对话情感识别的子对话动态提取 摘要1. 介绍2 相关工作2.1 对话上下文建模2.2 常识知识 3 方法3.1 问题定义3.2 模型概述3.3 特征提取模块3.4 依赖性建模3.5 交互式子对话提取模块3.6 重要性增强的多头自注意力模块3.7 子对话框主题提取模块3.8. 分类模块 四、实验4.1 数据集4.1…

《手把手教你怎么上手做一个小程序》

准备工作: 硬件准备: 装有微信的手机一台。 账号注册: 进入https://mp.weixin.qq.com/cgi-bin/registermidpage?actionindex&langzh_CN&token注册一个微信小程序账号。 然后输入邮箱注册账号。一个邮箱只能注册一个微信公众平台…

连续活跃天数统计

连续活跃天数统计 需求说明 什么是连续出现? 假设有如下日期信息: 20230401,20230402,20230403,20230405,20230406,20230407,20230410,20230411 则: 20230401-20230403 为一次连续出现,连续出现天数为 3 20230405-20230407 为一次…

二层交换机与防火墙连通上网实验

防火墙是一种网络安全设备,用于监控和控制网络流量。它可以帮助防止未经授权的访问,保护网络免受攻击和恶意软件感染。防火墙可以根据预定义的规则过滤流量,例如允许或阻止特定IP地址或端口的流量。它也可以检测和阻止恶意软件、病毒和其他威…

Mysql基础(五)外键约束

一 外键 激励: 每天进步一点点即可 ① 思考 1、在MySQL中,我们知道主键 PRIMARY KEY的主要作用是唯一区分表中的各个行 [记录];思考:但是对于外键 foreign key比较陌生? 那么外键作用以及限制条件和目的呢? ② 外键的定义 1、外键是某个表 A中…

【3dmax笔记】027:配置修改器集、工具栏自定义与加载

文章目录 一、配置修改器集二、自定义工具栏三、加载工具栏 一、配置修改器集 可以把自己常用的修改命令放到右边框中的部分,便于自己的操作,省去了每次都要花半天时间找命令的尴尬。新建一个二维或者三维物体,点击修改面板,点击…

4.26.7具有超级令牌采样功能的 Vision Transformer

Vision Transformer在捕获浅层的局部特征时可能会受到高冗余的影响。 在神经网络的早期阶段获得高效且有效的全局上下文建模: ①从超像素的设计中汲取灵感,减少了后续处理中图像基元的数量,并将超级令牌引入到Vision Transformer中。 超像素…

(五)JSP教程——response对象

response对象主要用于动态响应客户端请求(request),然后将JSP处理后的结果返回给客户端浏览器。JSP容器根据客户端的请求建立一个默认的response对象,然后使用response对象动态地创建Web页面、改变HTTP标头、返回服务器端地状态码…

[iOS]从拾遗到Runtime(上)

[iOS]从拾遗到Runtime(上) 文章目录 [iOS]从拾遗到Runtime(上)写在前面名词介绍instance 实例对象class 类对象meta-class 元类对象为什么要有元类? runtimeMethod(objc_method)SEL(objc_selector)IMP 类缓存(objc_cache)Category(objc_category) 消息传递消息传递的…

【数字经济】上市公司供应链数字化数据(2000-2022)

数据来源: 时间跨度:2000-2022年 数据范围:各上市企业 数据指标: 样例数据: 参考文献:[1]刘海建,胡化广,张树山,等.供应链数字化的绿色创新效应[J].财经研究,2023,49(03):4-18. 下载链接:https:…

深度学习网络:设计、开发和部署

​书籍:Deep Learning Networks: Design, Development and Deployment 作者:Jayakumar Singaram,S. S. Iyengar,Azad M. Madni 出版:Springer书籍下载-《​深度学习网络:设计、开发和部署》该教材为学生和工…

无意的一次学习,竟让我摆脱了Android控制?

由于鸿蒙的爆火,为了赶上时代先锋。到目前为止也研究过很长一段时间。作为一名Android的研发人员,免不了对其评头论足,指导文档如何写才算专业?页面如何绘制?页面如何跳转?有没有四大组件等等。 而Harmony…