通过自适应提示提升大语言模型的零样本推理能力

随着大模型(LLMs)的快速发展,它们在自然语言处理(NLP)任务上取得了前所未有的成就。特别是,LLMs展现出了强大的推理和规划能力,这得益于它们的少样本和零样本学习能力。然而,现有的方法仍存在一些限制,例如在少样本设置中,性能对示例选择非常敏感,而在零样本设置中,由于缺乏对LLMs的指导,性能受限。

为了解决这些限制,论文提出了COSP,这是一种不需要手工示例或真实标签的算法。作为一种新颖的提示设计方法,它旨在提升大模型(LLMs)在零样本(Zero-Shot)推理任务中的表现。该方法不依赖于手工制作的响应或真实标签,而是通过利用LLM自身生成的输出来构建上下文示例,从而引导模型进行更准确的推理。COSP包含两个主要阶段:

第一阶段:构建生成响应池和示例选择器

在这一阶段,COSP首先通过零样本链式思考(Zero-shot CoT)对所有测试问题进行查询,收集LLM生成的响应。这一过程涉及以下步骤:

  1. 候选池构建:对于每个测试问题,LLM被查询多次以生成多个推理路径和可能的答案。这些路径和答案构成了候选池,其中的每个元素都是一个潜在的示例。

  2. 一致性驱动的示例选择:从候选池中选择一组示例。这一选择过程非常关键,因为:

    • 需要从大量候选项中选择少量(通常小于等于10)示例。
    • 候选池本身可能包含错误,因为它们是在没有真实标签的情况下生成的。

    为了解决这些问题,COSP使用自一致性来精简候选池,并在没有真实标签的情况下选择示例。具体来说,对于每个测试问题,COSP首先计算所有预测答案的多数投票预测,并保留导致多数投票预测的推理路径,同时剪枝掉其他可能错误的推理-答案对。

  3. 结果熵计算:COSP使用结果熵作为自一致性的度量,以识别适合的问答对。结果熵是一个受自一致性启发的度量,用于捕捉LLM对其预测的不确定性。

  4. 惩罚重复性:COSP还引入了一种量化措施来惩罚重复性,因为重复的示例往往会导致性能下降。

第二阶段:使用生成的上下文示例进行查询

在第二阶段,COSP将选定的示例作为上下文信息与测试问题结合,并再次查询LLM。这一阶段的步骤如下:

  1. 上下文示例的拼接:将选定的示例作为上下文信息与测试问题拼接,形成新的查询。

  2. LLM的再次查询:使用新的查询对LLM进行查询,以生成第二轮的推理路径和答案。

  3. 最终预测的形成:通过对第一阶段和第二阶段生成的所有答案进行多数投票,形成每个问题的最终预测。

COSP方法的一个关键创新之处在于它如何从LLM自身的输出中选择和构建示例集。通过精心设计的评分函数,COSP在考虑一致性、多样性和重复性的基础上,选择最有助于提升LLM推理能力的示例。此外,COSP还可以适应性地调整每个问题所使用的示例数量,以及在少数样本设置中利用标记样本来增强性能。

实验结果

在实验部分,COSP方法在多种算术和逻辑推理任务上的表现进行了全面评估,涉及了PaLM-62B、PaLM-540B和GPT-3三种大型语言模型。实验的目的在于验证COSP在零样本学习环境下提升LLMs推理能力的有效性。结果显示,在没有任何真实标签指导的情况下,COSP通过自适应选择和构建示例集,显著提高了模型的推理准确率,平均提升幅度达到了10-15%。这一改进在统计上具有显著性,证明了COSP方法在缺乏明确示例和标签时,依然能够有效地引导LLMs进行逻辑推理。

特别值得一提的是,COSP在多数任务上的表现不仅超越了传统的零样本基线,而且达到了与少数样本学习方法相当的水平。这一发现表明,COSP提供的自适应提示对于LLMs来说是一种有效的推理引导手段,能够在没有额外标注数据的情况下,复现类似少数样本学习的性能提升。此外,COSP的方法还显示出了良好的通用性和适应性,这意味着它可以被广泛应用于多种不同的LLMs和任务类型中。

尽管COSP在实验中取得了令人鼓舞的结果,但论文也指出了该方法的一些局限性。例如,COSP依赖于模型的自一致性来预测准确性,这可能在某些任务上不总是有效的。此外,当面对极端困难的任务时,COSP可能无法提供显著的性能改进。尽管如此,COSP仍然为零样本推理任务提供了一个有前景的解决方案,并且它的设计理念为未来LLMs的应用和进一步的研究开辟了新的可能性。

论文链接:http://arxiv.org/pdf/2305.14106

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/681305.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手写SpringBoot核心功能流程

本文通过手写模拟实现一个简易版的Spring Boot 程序,让大家能以非常简单的方式知道Spring Boot大概的工作流程。 工程依赖 创建maven工程,并创建两个module springboot模块:手写模拟springboot框架的源码实现 test模块:业务系统…

华为云CodeArts API专场直播来袭!——探索API全生命周期管理新趋势

API的全生命周期管理是否让你摸不清头脑?你是否对API的前沿技术和应用充满了好奇,渴望一探究竟? 华为云PaaS服务即将在5月10日16:00,为你带来一场别开生面的CodeArts API专场直播活动! 你可以在轻松愉快的氛围中&…

大模型相关技术-embedding与分词

接上一篇文章大模型相关技术-初识RAG,我们已经对RAG(搜索增强)有了一定的了解,知道了为什么需要RAG和RAG的技术基石,本篇我们将详细学习一下RAG的两大关键技术中的embedding 在自然语言处理(NLP&#xff0…

【Vue】vue中将 html 或者 md 导出为 word 文档

原博主 xh-htmlword文档 感谢这位大佬的封装优化和分享,亲测有用!可以去看大佬👇的说明! 前端HTML转word文档,绝对有效!!! 安装 npm install xh-htmlword导入 import handleEx…

SpringSecurity源码分析(RemeberMe)

RememberMeServices RememberMeServices 记住我的服务的接口 可以重写实现自己的记住我 public interface RememberMeServices { //建议 org. springframework. security. authentication. RememberMeAuthenticationToken 在大多数情况下使用它,因为它具有相应的身份…

铅离子/镉离子绿色荧光探针,具有高特异性高灵敏度

基本信息: 中文名称:铅离子/镉离子绿色荧光探针 英文名称:Leadmium TM Green AM dye 外观:固体或粉末状 规格:10mg、25mg、50mg (可支持定制) 纯度:95% 储存条件:-20C避光避湿…

【Docker】新手教程的第一个demo:Wordpress

1 任务简单介绍 WordPress是什么: 是一个常用博客软件简单易部署,只需要两个容器(业务容器 数据库容器) 本文借鉴博客,使用自建 WordPress 容器方法在Docker上部署Wordpress,本地环境为Mac时使用该博客…

mysql数据库---操作数据库跟表的命令总结

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文着重整理mysql管理库跟表的指令。 不涉及增删查改等指令 其实本篇主要是我做好笔记格式 用的时候直接复制粘贴的 所以排版大多是为了快速找功能来排的 方便大家快速找目标语法 数据库的简介 一个数据库系…

系统权限控制插件封装-实现系统权限控制插件化

背景:按照传统的开发方式方式,每次新开发一个系统,就需要花费大量时间精力去搭建权限控制模块,如果我们把权限控制这一整个模块都抽离成一个独立的权限控制插件,支持单命令安装,全面暴露参数与方法&#xf…

JDBC技术-1

JDBC: Java Database Connectivity Java连接数据库技术 通俗点说,在Java代码中,使用JDBC提供的方法,可以发送字符串类型的SQL语句到数据库管理软件(Mysql,Oracle等),并且获取语句执行结…

RK3568平台(基础篇)linux错误码

一.概述 linux应用程序开发过程中,经常会遇到一些错误信息的返回,存在的可能性有,参数有误、非法访问、系统资源限制、设备/文件不存在、访问权限限制等等。对于这类错误,可以通过perror函数输出具体描述,或者通过str…

Linux-笔记 uboot修改设备树

1. FDT介绍 扁平设备树(Flattened Device Tree,FDT),也叫平坦设备树,是设备树的一种二进制表示形式,提高了在嵌入式系统中的传输和解析效率; 2. 在U-Boot中使用FDT 2.1. 进入U-Boot 开发板上…