时间序列预测任务下探索深度学习参数对模型预测性能的影响

时间序列相关的项目在我之前的很多博文中都有涉及,覆盖的数据领域也是比较广泛的,很多任务或者是项目中往往是搭建出来指定的模型之后就基本完成任务了,比较少去通过实验的维度去探索分析不同参数对模型性能的影响,这两天正好有时间也有这么个机会,就想着从这个角度做点事情来对模型产生的结果进行分析。

数据可以使用任意时序的数据都是可以的,本质都是时间序列的数据即可。简单的实例数据如下所示:

 参考前面的博文即可知晓如何将时序数据转化为标准的预测数据集,这里就不再赘述了。

这里主要是想从实验角度来分析结果,基础模型构建如下所示,首先考虑的是模型层数产生的影响,这里层数从1叠加至3层:

def initModel(steps, features):"""模型初始化"""model = Sequential()model.add(LSTM(64,activation="relu",input_shape=(steps, features),kernel_regularizer=l2(0.001),return_sequences=False,))model.add(Dense(features))model.compile(optimizer="adam", loss="mse")return model

 结果如下所示:

 接下来是两层的,如下所示:

def initModel(steps, features):"""模型初始化"""model = Sequential()model.add(LSTM(64,activation="relu",input_shape=(steps, features),kernel_regularizer=l2(0.001),return_sequences=True,))model.add(LSTM(64, activation="relu", kernel_regularizer=l2(0.001)))model.add(Dense(features))model.compile(optimizer="adam", loss="mse")return model

结果如下所示:

 最后是3层的,如下所示:

def initModel(steps, features):"""模型初始化"""model = Sequential()model.add(LSTM(64,activation="relu",input_shape=(steps, features),kernel_regularizer=l2(0.001),return_sequences=True,))model.add(LSTM(64, activation="relu", kernel_regularizer=l2(0.001),return_sequences=True))model.add(LSTM(64, activation="relu", kernel_regularizer=l2(0.001)))model.add(Dense(features))model.compile(optimizer="adam", loss="mse")return model

结果如下所示:

 直观体验下来是层数的增加并没有带来提升,反而是带来了崩溃式的结果。

接下来想要看下同样结构下,改变参数值带来的变化。

简单的实例如下所示:

def initModel(steps, features):"""模型初始化"""model = Sequential()model.add(LSTM(128,activation="relu",input_shape=(steps, features),kernel_regularizer=l2(0.001),return_sequences=False,))model.add(Dense(features))model.compile(optimizer="adam", loss="mse")return model

结果如下所示:

 接下来同样的思路改变参数,结果如下所示:

 参数的调整能带来一定的改变但是限定在一定的复读内,接下来考虑借鉴之前目标检测里面的方案来改造设计新的结构,借助于搜索技术可以事半功倍,结果如下所示:

 可以看到:结果有了质的提升。后面有时间再继续深度研究下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/68528.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java对大文件分片上传

这里记录一下,Java对大文件的切分,和后端接口分片上传的实现逻辑 正常,前后端分离的项目其实是前端去切分文件,后端接口接收到切分后的分片文件去合并,这里都用java来记录一下。特别说明:我这里用的是zip包…

Stable Diffusion基础:ControlNet之图片高仿效果

今天继续给大家分享AI绘画中 ControlNet 的强大功能,本次的主角是 Reference,它可以将参照图片的风格迁移到新生成的图片中,这句话理解起来很困难,我们将通过几个实例来加深体会,比如照片转二次元风格、名画改造、AI减…

OPENCV C++(十二)模板匹配

正常模板匹配函数 matchTemplate(img, templatee, resultMat, 0);//模板匹配 这里0代表的是方法,一般默认为0就ok img是输入图像 templatee是模板 resultmat是输出 1、cv::TM_SQDIFF:该方法使用平方差进行匹配,因此最佳的匹配结果在结果为…

使用Scanner接收用户输入

扫描输入的两种方式 Scanner主要提供了两个方法来扫描输入: (1)hasNextXxx():是否还有下一个输入项,Xxx可以是Int,Long等代表基本数据类型的字符串。 如果只是判断是否包含下一个字符串,则直…

【JavaWeb】MySQL约束、事务、多表查询

1 约束 PRIMARY KEY 主键约束 UNIQUE 唯一约束 NOT NULL 非空约束 DEFAULT 默认值约束 FOREIGN KEY 外键约束 主键 主键值必须唯一且非空;每个表必须有一个主键 建表时主键约束 CREATE TABLE 表名 (字段名 字段类型 PRIMARY KEY,字段名 字段类型 );CR…

MyBatis的XML映射文件

Mybatis的开发有两种方式: 注解 XML配置文件 通过XML配置文件的形式来配置SQL语句,这份儿XML配置文件在MyBatis当中也称为XML映射文件。 导学:在MyBatis当中如何来定义一份儿XML映射文件? 在MyBatis当中,定义XML…

帆软大屏2.0企业制作

 数字化观点中心 / 当前页 如何从0-1制作数据大屏,我用大白话给你解释清楚了 文 | 商业智能BI相关文章 阅读次数:18,192 次浏览 2023-06-08 11:51:49 好莱坞大片《摩天营救》中有这么一个场景:  你可以看见反派大b…

Postman接口自动化测试实例

一.实例背景 在实际业务中,经常会出现让用户输入用户密码进行验证的场景。而为了安全,一般都会先请求后台服务器获取一个随机数做为盐值,然后将盐值和用户输入的密码通过前端的加密算法生成加密后串传给后台服务器,后台服务器接到…

开启想象翅膀:轻松实现文本生成模型的创作应用,支持LLaMA、ChatGLM、UDA、GPT2、Seq2Seq、BART、T5、SongNet等模型,开箱即用

开启想象翅膀:轻松实现文本生成模型的创作应用,支持LLaMA、ChatGLM、UDA、GPT2、Seq2Seq、BART、T5、SongNet等模型,开箱即用 TextGen: Implementation of Text Generation models 1.介绍 TextGen实现了多种文本生成模型,包括&a…

小目标检测(5)——有线硬触发和有线软触发架构学习

文章目录 引言正文PLC介绍有线硬触发有线软触发硬件接口 总结引用 引言 之前花了很多时间也就是仅仅看懂了基本代码,最近和老师交流之后,发现还有很多东西都需要弄.最终的灯检机,并不是直接接上计算机就使用的,并不是单纯通过计算机控制的,还有一个叫做PLC(可编程逻辑控制器),…

Linux零基础快速入门到精通

目录 一、操作系统概述 二、初始Linux Linux的诞生 ​编辑 Linux内核 Linux发行版 小结 三、虚拟机 认识虚拟机 虚拟化软件及安装 远程连接Linux系统 小结 扩展-虚拟机快照 四、Linux基础命令 查看命令帮助和手册(--help) Linux的目…

Python 基础教程,Python 是什么?

Python 的诞生是极具戏曲性的,据 Guido 自述记载,Python 语言是在圣诞节期间为了打发无聊的时间而开发的,之所以会选择 Python 作为该编程语言的名字,是因为 Guido 是 Monty Python 戏剧团的忠实粉丝。 Python 语言是在 ABC 语言的…