Flink 部署模式

目录

概述

部署模式

会话模式(Session Mode)

单作业模式(Per-Job Mode)

应用模式(Application Mode)

运行模式(资源管理模式)

Standalone运行模式

会话模式部署

应用模式部署

Yarn运行模式

会话模式部署

单作业模式部署

应用模式部署

优化

K8S运行模式(了解)


概述

Flink 是一个多功能框架,以混合搭配的方式支持许多不同的部署场景。

下图显示了每个 Flink 集群的构建块。
 

Flink客户端:它获取 Flink 应用程序的代码,将其转换为 JobGraph 并将其提交给 JobManager。

JobManager :是 Fl​​ink 中央工作协调组件的名称。它具有针对不同资源提供者的实现,这些实现在高可用性、资源分配行为和支持的作业提交模式方面有所不同。将工作分配到 TaskManager,其中运行实际操作符(例如sources, transformations 和 sinks)。

TaskManager: 是实际执行 Flink 作业工作的服务。

Flink作业提交的一般提交流程如下:

部署模式

在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。Flink为各种场景提供了不同的部署模式,主要有以下三种:

  • Application Mode(应用模式):专门为一个应用程序运行集群。作业的main方法在 JobManager 上执行。支持在应用程序中多次调用“execute”/“executeAsync”。
  • Per-Job Mode(Per-Job 模式)(已弃用):专门为一项作业运行一个集群。作业的main方法在客户端运行。
  • Session Mode(会话模式):一个 JobManager 实例管理同一 TaskManager 集群的多个作业。

它们的区别主要在于:集群的生命周期以及资源的分配方式;以及应用的main方法到底在哪里执行——客户端(Client)还是JobManager。

会话模式(Session Mode)

会话模式:先启动一个集群,保持一个会话,通过客户端提交作业。集群启动时所有资源就都已经确定,所以所有提交的作业会竞争集群中的资源。

会话模式比较适合于单个规模小、执行时间短的大量作业。

单作业模式(Per-Job Mode)

会话模式因为资源共享会导致很多问题,所以为了更好地隔离资源,我们可以考虑为每个提交的作业启动一个集群,这就是所谓的单作业(Per-Job)模式。

作业完成后,集群就会关闭,所有资源也会释放。这些特性使得单作业模式在生产环境运行更加稳定,所以是实际应用的首选模式需要注意的是,Fink本身无法直接这样运行,所以单作业模式一般需要借助一些资源管理框架来启动集群,比如YARN、Kubernetes(K8S)。

应用模式(Application Mode)

前面提到的两种模式下,应用代码都是在客户端上执行,然后由客户端提交给JobManager的。但是这种方式客户端需要占用大量网络带宽,去下载依赖和把二进制数据发送给JobManager,加上很多情况下我们提交作业用的是同一个客户端,就会加重客户端所在节点的资源消耗。

所以应用模式的解决办法就是,直接把应用提交到JobManger上运行。我们需要为每一个提交的应用单独启动一个JobManager,也就是创建一个集群。这个JobManager只为执行这一个应用而存在,执行结束之后JobManager也就关闭了,这就是所谓的应用模式。

与 Per-Job(已弃用)模式相比,Application 模式允许提交包含多个作业的应用程序。作业执行的顺序不受部署模式的影响,而是受用于启动作业的调用的影响。使用阻塞的execute() 建立一个顺序,这将导致“下一个”作业的执行被推迟,直到“这个”作业完成。使用非阻塞的executeAsync()将导致“下一个”作业在“此”作业完成之前开始。

运行模式(资源管理模式)

在了解了Flink的三种部署模式后,运行Flink作业需要资源,按照运行时使用资源的不同可以分为有三种:Standalone运行模式、Yarn运行模式、K8S运行模式。每种运行模式中,可以有不同的部署模式。

Standalone运行模式

Standalone运行模式:使用Flink集群的资源来运行Flink作业。

三种部署模式中,Standalone运行模式支持会话模式部署和应用模式部署,不支持单作业模式部署。

会话模式部署

提前启动集群,并通过Web页面/flink run命令客户端提交任务(可以多个任务,但是集群资源固定)。

案例:使用会话模式运行一个flink作业,例如:自己编写的WordCount作业,可参考Flink WordCount实践

启动flink standalone集群

[hadoop@node2 ~]$ start-cluster.sh

在node2启动nc命令

[hadoop@node2 ~]$ nc -lk 7777
​
Web UI提交作业

(1)任务打包完成后,我们打开Flink的WEB UI页面,在右侧导航栏点击“Submit New Job”,然后点击按钮“+ Add New”,选择要上传运行的JAR包,如下图所示。

点击jar包名称,填写主类和并行度信息

主类:org.example.wc.SocketStreamWordCount

并行度:1

点击Submit提交作业

测试

在nc终端发送数据

[hadoop@node2 ~]$ nc -lk 7777
hello world
​

查看结果

命令行提交作业

命令执行

[hadoop@node2 ~]$ flink run -m node2:8081 -c org.example.wc.SocketStreamWordCount flinkdemo-1.0-SNAPSHOT.jar

测试

[hadoop@node2 ~]$ nc -lk 7777
hello flink
​

在node3的Task Manager中查看到结果

注意:计算的机器不固定是node3,也可能在其他机器上。

在node3上,命令行查看结果

[hadoop@node3 ~]$ cd $FLINK_HOME/
[hadoop@node3 flink-1.17.1]$ ls
bin  conf  examples  lib  LICENSE  licenses  log  NOTICE  opt  plugins  README.txt
[hadoop@node3 flink-1.17.1]$ cd log/
[hadoop@node3 log]$ ls
flink-hadoop-client-node2.log            flink-hadoop-taskexecutor-0-node3.log.3
flink-hadoop-client-node3.log            flink-hadoop-taskexecutor-0-node3.log.4
flink-hadoop-taskexecutor-0-node3.log    flink-hadoop-taskexecutor-0-node3.log.5
flink-hadoop-taskexecutor-0-node3.log.1  flink-hadoop-taskexecutor-0-node3.out
flink-hadoop-taskexecutor-0-node3.log.2
[hadoop@node3 log]$ tail flink-hadoop-taskexecutor-0-node3.out 
(hello,1)
(flink,1)​
应用模式部署

应用模式下不会提前创建集群,所以不能调用start-cluster.sh脚本。我们可以standalone-job.sh来创建一个JobManager。

具体步骤如下:

(0)准备工作

如果之前开启了集群进程,先关闭之前开启的集群进程

[hadoop@node2 ~]$ stop-cluster.sh

如果之前没有开启集群进程,则不用关闭集群。

在node2中执行以下命令启动netcat。

[hadoop@node2 ~]$ nc -lk 7777
​

(1)进入到Flink的安装路径下,将应用程序的jar包放到lib/目录下。

[hadoop@node2 ~]$ mv flinkdemo-1.0-SNAPSHOT.jar $FLINK_HOME/lib/

(2)启动JobManager,并指定作业入口。

[hadoop@node2 ~]$ standalone-job.sh start --job-classname org.example.wc.SocketStreamWordCount
Starting standalonejob daemon on host node2.
​

这里我们直接指定作业入口类,脚本会到lib目录扫描所有的jar包。

查看进程,看到JobManager已经启动

[hadoop@node2 ~]$ jps
5061 StandaloneApplicationClusterEntryPoint
5095 Jps
​

(3)启动TaskManager

​
[hadoop@node2 ~]$ taskmanager.sh start
Starting taskexecutor daemon on host node2.
[hadoop@node2 ~]$ jps
5457 Jps
5061 StandaloneApplicationClusterEntryPoint
5429 TaskManagerRunner
​
​
[hadoop@node3 log]$ taskmanager.sh start
Starting taskexecutor daemon on host node3.
[hadoop@node3 log]$ jps
3105 TaskManagerRunner
3175 Jps
​
​
[hadoop@node4 log]$ taskmanager.sh start
Starting taskexecutor daemon on host node4.
[hadoop@node4 log]$ jps
2708 Jps
2637 TaskManagerRunner

注意:这里在集群里所有机器(node2、node3、node4)都启动TaskManager,也可以按需启动特定的机器作为TaskManager。

(4)发送单词数据

[hadoop@node2 ~]$ nc -lk 7777
hello hadoop
​

(5)在node2:8081查看结果

Yarn运行模式

使用YARN资源来运行Flink作业。

YARN上部署的过程是:客户端把Flink应用提交给YARN的ResourceManager,Yarn的ResourceManager根据需要分配Yarn的NodeManager上容器。在这些容器上,Flink会部署JobManager和TaskManager的实例。Flink会根据运行在JobManger上的作业所需要的Slot数量动态分配TaskManager资源。

三种部署模式中,YARN运行模式均支持。

(1)配置环境变量,增加环境变量配置如下:

[hadoop@node2 ~]$ sudo vim /etc/profile.d/my_env.sh

添加如下内容

#FLINK YARN MODE NEED USE HADOOP CONF
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`

让环境变量生效

[hadoop@node2 ~]$ source /etc/profile

注意:如果只在node2提交作业,只需要在node2上执行,不用分发到其他机器上(如果需要在其他机器操作,也需要设置。)。`符号表示在shell里执行命令。

(2)启动Hadoop集群,包括HDFS和YARN。

[hadoop@node2 ~]$ start-dfs.sh
[hadoop@node3 ~]$ start-yarn.sh

(3)在node2中执行以下命令启动netcat。

[hadoop@node2 ~]$ nc -lk 7777
​
会话模式部署

YARN的会话模式与独立集群略有不同,需要首先申请一个YARN会话(YARN Session)来启动Flink集群。

YARN Session模式作业提交流程如下:

查看命令帮助

[hadoop@node2 ~]$ yarn-session.sh --help
...
省略若干日志信息输出
...
Usage:Optional-at,--applicationType <arg>     Set a custom application type for the application on YARN-D <property=value>             use value for given property-d,--detached                   If present, runs the job in detached mode-h,--help                       Help for the Yarn session CLI.-id,--applicationId <arg>       Attach to running YARN session-j,--jar <arg>                  Path to Flink jar file-jm,--jobManagerMemory <arg>    Memory for JobManager Container with optional unit (default: MB)-m,--jobmanager <arg>           Set to yarn-cluster to use YARN execution mode.-nl,--nodeLabel <arg>           Specify YARN node label for the YARN application-nm,--name <arg>                Set a custom name for the application on YARN-q,--query                      Display available YARN resources (memory, cores)-qu,--queue <arg>               Specify YARN queue.-s,--slots <arg>                Number of slots per TaskManager-t,--ship <arg>                 Ship files in the specified directory (t for transfer)-tm,--taskManagerMemory <arg>   Memory per TaskManager Container with optional unit (default: MB)-yd,--yarndetached              If present, runs the job in detached mode (deprecated; use non-YARN specific option instead)-z,--zookeeperNamespace <arg>   Namespace to create the Zookeeper sub-paths for high availability mode
​

常用参数解读:

  • -d:分离模式,如果你不想让Flink YARN客户端一直前台运行,可以使用这个参数,即使关掉当前对话窗口,YARN session也可以后台运行。

  • -jm(--jobManagerMemory):配置JobManager所需内存,默认单位MB。

  • -nm(--name):配置在YARN UI界面上显示的任务名。

  • -qu(--queue):指定YARN队列名。

  • -tm(--taskManager):配置每个TaskManager所使用内存。

启动一个YARN session

[hadoop@node2 ~]$ yarn-session.sh -nm test
...
省略部分日志输出
...
2024-04-16 17:49:09,244 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node3:37102 of application 'application_1713260243932_0002'.
JobManager Web Interface: http://node3:37102
​

可以看到:YARN Session启动之后会给出一个YARN application ID以及一个Web UI地址(http://node3:37102),Web UI地址是随机的,每次启动Session的Web UI地址也可能不一样。

注意:flink1.17的YARN模式,会自动覆盖之前standalone集群的配置。所以node3也可以作为master节点。

浏览器访问Web UI

node3:37102

通过Web UI提交作业

测试

nc发送数据

Web UI查看结果

8088端口查看作业

也可以点击Tracking UI的ApplicationMaster进入Flink Web UI界面

取消作业

通过命令行提交作业

启动yarn-session

[hadoop@node2 ~]$ yarn-session.sh -nm test
...
省略部分输出
...
2024-04-16 20:30:50,602 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node2:37680 of application 'application_1713270240854_0001'.
JobManager Web Interface: http://node2:37680
​

 查看Web UI

http://node2:37680

此时还没有可用的Task Managers和Task Slots

将Flink作业jar包上传到node3

将该任务提交到已经开启的Yarn-Session中运行。

[hadoop@node3 ~]$ flink run -c org.example.wc.SocketStreamWordCount -m node2:37680 flinkdemo-1.0-SNAPSHOT.jar

提交作业后,Task Managers 变为1,Total Task Slots也为1

查看正在运行的作业

测试

发送数据

[hadoop@node2 ~]$ nc -lk 7777
hello flink
hello hadoop
​

刷新结果

任务提交成功后,可在YARN的Web UI界面查看运行情况。

node3:8088

Web UI查看结果

可以看到,通过8088同样也可以查看到Flink的Web UI,并能查看到作业的运行情况。

查看日志

命令查看日志

[hadoop@node3 ~]$ yarn logs -applicationId application_1713270240854_0001 
​
[hadoop@node3 ~]$ yarn logs -applicationId application_1713270240854_0001 | tail 
[hadoop@node3 ~]$ yarn logs -applicationId application_1713270240854_0001 | less

停止session

退回查看应用状态

改成是kill掉session,使用命令停止session更加优雅。

重新开启一个session会话

[hadoop@node2 ~]$ yarn-session.sh -nm test -d
...
2024-04-16 21:25:21,517 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node2:36883 of application 'application_1713270240854_0002'.
JobManager Web Interface: http://node2:36883
2024-04-16 21:25:21,973 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - The Flink YARN session cluster has been started in detached mode. In order to stop Flink gracefully, use the following command:
$ echo "stop" | ./bin/yarn-session.sh -id application_1713270240854_0002
If this should not be possible, then you can also kill Flink via YARN's web interface or via:
$ yarn application -kill application_1713270240854_0002
Note that killing Flink might not clean up all job artifacts and temporary files.
[hadoop@node2 ~]$ 

输出日志中看到,优雅地停止flink session的命令是

echo "stop" | ./bin/yarn-session.sh -id application_1713270240854_0002

查看8088端口,多了一个应用application_1713270240854_0002

优雅地停止flink应用

[hadoop@node2 ~]$ echo "stop" | yarn-session.sh -id application_1713270240854_0002
...
2024-04-16 21:31:48,210 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node3/192.168.193.143:8032
2024-04-16 21:31:48,644 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node2:36883 of application 'application_1713270240854_0002'.
2024-04-16 21:31:49,765 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Deleted Yarn properties file at /tmp/.yarn-properties-hadoop
2024-04-16 21:31:49,769 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Application application_1713270240854_0002 finished with state FINISHED and final state SUCCEEDED at 1713274309726
​

查看作业State为FINISHED,FinalStatus为SUCCEEDED

单作业模式部署

在YARN环境中,由于有了外部平台做资源调度,所以我们也可以直接向YARN提交一个单独的作业,从而启动一个Flink集群。

(1)执行命令提交作业。

在node3提交作业

[hadoop@node3 ~]$ flink run -d -t yarn-per-job -c org.example.wc.SocketStreamWordCount flinkdemo-1.0-SNAPSHOT.jar 
​
------------------------------------------------------------The program finished with the following exception:
​
org.apache.flink.client.program.ProgramInvocationException: The main method caused an error: No Executor found. Please make sure to export the HADOOP_CLASSPATH environment variable or have hadoop in your classpath. For more information refer to the "Deployment" section of the official Apache Flink documentation.at org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:372)at org.apache.flink.client.program.PackagedProgram.invokeInteractiveModeForExecution(PackagedProgram.java:222)at org.apache.flink.client.ClientUtils.executeProgram(ClientUtils.java:105)at org.apache.flink.client.cli.CliFrontend.executeProgram(CliFrontend.java:851)at org.apache.flink.client.cli.CliFrontend.run(CliFrontend.java:245)at org.apache.flink.client.cli.CliFrontend.parseAndRun(CliFrontend.java:1095)at org.apache.flink.client.cli.CliFrontend.lambda$mainInternal$9(CliFrontend.java:1189)at org.apache.flink.runtime.security.contexts.NoOpSecurityContext.runSecured(NoOpSecurityContext.java:28)at org.apache.flink.client.cli.CliFrontend.mainInternal(CliFrontend.java:1189)at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:1157)
Caused by: java.lang.IllegalStateException: No Executor found. Please make sure to export the HADOOP_CLASSPATH environment variable or have hadoop in your classpath. For more information refer to the "Deployment" section of the official Apache Flink documentation.
​

因为,此前只在node2设置了环境变量,所以哪台需要以单作业运行,需要设置hadoop相关环境变量。

设置hadoop classpath环境变量后

再次执行

[hadoop@node3 ~]$ flink run -d -t yarn-per-job -c org.example.wc.SocketStreamWordCount flinkdemo-1.0-SNAPSHOT.jar 
​

报错如下

2024-04-16 21:53:16,364 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node2:42969 of application 'application_1713270240854_0003'.
Job has been submitted with JobID 2da4916c92fe28098976286b72700f6c
Exception in thread "Thread-5" java.lang.IllegalStateException: Trying to access closed classloader. Please check if you store classloaders directly or indirectly in static fields. If the stacktrace suggests that the leak occurs in a third party library and cannot be fixed immediately, you can disable this check with the configuration 'classloader.check-leaked-classloader'.at org.apache.flink.util.FlinkUserCodeClassLoaders$SafetyNetWrapperClassLoader.ensureInner(FlinkUserCodeClassLoaders.java:184)at org.apache.flink.util.FlinkUserCodeClassLoaders$SafetyNetWrapperClassLoader.getResource(FlinkUserCodeClassLoaders.java:208)
​

解决方式:

方法1.配置文件flink-conf.yaml添加如下配置,并分发到其他机器。

classloader.check-leaked-classloader: false

方法2.命令行设置-Dclassloader.check-leaked-classloader=false

 

这里采用方法2解决。

[hadoop@node3 ~]$ flink run -d -t yarn-per-job -c org.example.wc.SocketStreamWordCount -Dclassloader.check-leaked-classloader=false flinkdemo-1.0-SNAPSHOT.jar

   ...省略部分输出...

2024-04-16 21:58:45,827 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2024-04-16 21:58:45,845 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1713270240854_0004
2024-04-16 21:58:45,908 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1713270240854_0004
2024-04-16 21:58:45,909 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
2024-04-16 21:58:45,911 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
2024-04-16 21:58:54,017 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
2024-04-16 21:58:54,018 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - The Flink YARN session cluster has been started in detached mode. In order to stop Flink gracefully, use the following command:
$ echo "stop" | ./bin/yarn-session.sh -id application_1713270240854_0004
If this should not be possible, then you can also kill Flink via YARN's web interface or via:
$ yarn application -kill application_1713270240854_0004
Note that killing Flink might not clean up all job artifacts and temporary files.
2024-04-16 21:58:54,019 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node4:44661 of application 'application_1713270240854_0004'.
Job has been submitted with JobID ef5ff58d20e6acc616eeb4a2c32352e5
[hadoop@node3 ~]$ 
​

点击ApplicationMaster跳到Web UI界面,这里003作业可以跳过去,003和004都在跑,资源不够。停掉003和004,然后,重新启动per-job作业,此时作业ID为005

点击跳转到Flink Web UI界面如下

测试

nc发送数据,例如:hello java

查看Web UI结果

可以使用命令行查看或取消作业

查看作业命令:

[hadoop@node3 ~]$ flink list -t yarn-per-job -Dyarn.application.id=application_1713270240854_0005

取消作业命令格式:

flink cancel -t yarn-per-job -Dyarn.application.id=application_xxxx_yy <jobId>

这里的application_XXXX_YY是当前应用的ID,<jobId>是作业的ID。注意如果取消作业,整个Flink集群也会停掉。

具体命令如下:

flink cancel -t yarn-per-job -Dyarn.application.id=application_1713270240854_0005 5ca1a56ec0b15b0a3f5990438dde8430

查看8088端口

应用模式部署

应用模式部署,允许main()方法在JobManager上执行,这样可以分担Client的压力。

应用模式与单作业模式类似,直接执行flink run-application命令即可。

per-job模式命令

flink run -d -t yarn-per-job -c org.example.wc.SocketStreamWordCount -Dclassloader.check-leaked-classloader=false flinkdemo-1.0-SNAPSHOT.jar

应用模式命令

flink run-application -d -t yarn-application -c org.example.wc.SocketStreamWordCount -Dclassloader.check-leaked-classloader=false flinkdemo-1.0-SNAPSHOT.jar

区别:

1.per-job是run,应用模式是run-application

2.per-job -t是yarn-per-job,应用模式 -t是yarn-application

执行应用模式

[hadoop@node3 ~]$ flink run-application -d -t yarn-application -c org.example.wc.SocketStreamWordCount -Dclassloader.check-leaked-classloader=false flinkdemo-1.0-SNAPSHOT.jar

部分日志如下

测试

nc发送数据

hello flink

查看结果

查看或取消作业命令格式

$ flink list -t yarn-application -Dyarn.application.id=application_XXXX_YY
​
$ flink cancel -t yarn-application -Dyarn.application.id=application_XXXX_YY <jobId>

查看作业

[hadoop@node3 ~]$ flink list -t yarn-application -Dyarn.application.id=application_1713270240854_0006

取消作业

[hadoop@node3 ~]$ flink cancel -t yarn-application -Dyarn.application.id=application_1713270240854_0006 c09dd8a76391a1264d3b33fec7f80266

优化

把作业需要用到的依赖、插件等资源提前上传到HDFS,作业需要的资源直接从HDFS获取。

可以通过yarn.provided.lib.dirs配置选项指定位置,将flink的依赖上传到远程。

(1)上传flink的lib和plugins到HDFS上

[hadoop@node3 ~]$ hadoop fs -mkdir /flink-dist
[hadoop@node3 ~]$ hadoop fs -put $FLINK_HOME/lib/ /flink-dist
[hadoop@node3 ~]$ hadoop fs -put $FLINK_HOME/plugins/ /flink-dist
[hadoop@node3 ~]$ hdfs dfs -ls /flink-dist
Found 2 items
drwxr-xr-x   - hadoop supergroup          0 2024-04-16 22:54 /flink-dist/lib
drwxr-xr-x   - hadoop supergroup          0 2024-04-16 22:54 /flink-dist/plugins
[hadoop@node3 ~]$ 
​

put操作提示

2024-04-16 22:54:59,200 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false

不用管这个提示信息。

(2)上传Flink作业jar包到HDFS

[hadoop@node3 ~]$ hadoop fs -mkdir /flink-jars
[hadoop@node3 ~]$ hadoop fs -put flinkdemo-1.0-SNAPSHOT.jar /flink-jars

(3)提交作业

[hadoop@node3 ~]$ flink run-application -t yarn-application -Dyarn.provided.lib.dirs="hdfs://node2:9820/flink-dist" -c org.example.wc.SocketStreamWordCount hdfs://node2:9820/flink-jars/flinkdemo-1.0-SNAPSHOT.jar

这种方式下,Flink本身的依赖和用户jar可以预先上传到HDFS,而不需要单独发送到集群,这就使得作业提交更加轻量了。

测试

nc发送数据

hello flink

查看结果

查看作业

[hadoop@node3 ~]$ flink list -t yarn-application -Dyarn.application.id=application_1713270240854_0008

取消作业

[hadoop@node3 ~]$ flink cancel -t yarn-application -Dyarn.application.id=application_1713270240854_0008 5656744f88b9384620d93d178859d047

K8S运行模式(了解)

使用K8S资源来运行Flink作业。

容器化部署是如今业界流行的一项技术,基于Docker镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是Kubernetes(K8S),基本原理与YARN是类似的,具体配置可以参见官网说明,这里我们就不做过多讲解了。

K8S原生Session模式作业提交流程如下:

完成!enjoy it!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/685460.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电脑设置在哪里打开?Window与Mac双系统操作指南

随着科技的不断发展&#xff0c;电脑已经成为我们日常生活和工作中不可或缺的一部分。然而&#xff0c;对于许多初学者来说&#xff0c;如何找到并熟悉电脑的设置界面可能是一个挑战。特别是对于那些同时使用Windows和Mac双系统的用户来说&#xff0c;更是需要一篇详尽的指南来…

景源畅信电商:抖音小店开店的步骤有哪些?

在移动互联网高速发展的今天&#xff0c;利用短视频平台进行商品营销已成为一种潮流。抖音作为其中的佼佼者&#xff0c;吸引了无数商家纷纷入驻&#xff0c;希望通过这个巨大的流量池实现产品推广和销售。然而&#xff0c;想要在抖音上开设一家小店并非想象中那么简单&#xf…

论文阅读:《Sequence can Secretly Tell You What to Discard》,减少推理阶段的 kv cache

目前各类大模型都支持长文本&#xff0c;例如 kimi chat 以及 gemini pro&#xff0c;都支持 100K 以及更高的上下文长度。但越长的上下文&#xff0c;在推理过程中需要存储的 kv cache 也越多。假设&#xff0c;数据的批次用 b 表示&#xff0c;输入序列的长度仍然用 s 表示&a…

教你解决PUBG绝地求生延迟高 网络延迟高的问题

在《绝地求生》&#xff08;PUBG&#xff09;这款备受全球玩家追捧的战术竞技游戏中&#xff0c;其逼真的战场环境和心跳加速的生存竞赛无不让人为之痴迷。不过&#xff0c;有些玩家在经历了一场惊心动魄的对局后&#xff0c;却面临了一个不大不小的麻烦&#xff1a;比赛圆满落…

摄像头控制器芯片算法研究与实现

摘至于《摄像头控制器芯片算法研究与实现》--华南理工大学 微电子学与固体电子学 以上的方法&#xff0c;可以在安防设备快起应用中借鉴&#xff0c;快速调整AE曝光参数达到比较合适的亮度范围&#xff0c;省略AE调整过程中的亮度平滑过程。

美团mtgsig 1.1算法分析

声明 本文以教学为基准、本文提供的可操作性不得用于任何商业用途和违法违规场景。 本人对任何原因在使用本人中提供的代码和策略时可能对用户自己或他人造成的任何形式的损失和伤害不承担责任。 如有侵权,请联系我进行删除。 这里只是我分析的分析过程,以及一些重要点的记录…

【核武器】2024 年美国核武器-20240507

2024年5月7日,《原子科学家公报》发布了最新版的2024美国核武器手册 Hans M. Kristensen, Matt Korda, Eliana Johns, and Mackenzie Knight, United States nuclear weapons, 2024, Bulletin of the Atomic Scientists, 80:3, 182-208, DOI: https://doi.org/10.1080/00963…

YOLOv9改进策略 | 添加注意力篇 | 利用YOLO-Face提出的SEAM注意力机制优化物体遮挡检测(附代码 + 修改教程)

一、本文介绍 本文给大家带来的改进机制是由YOLO-Face提出能够改善物体遮挡检测的注意力机制SEAM&#xff0c;SEAM&#xff08;Spatially Enhanced Attention Module&#xff09;注意力网络模块旨在补偿被遮挡面部的响应损失&#xff0c;通过增强未遮挡面部的响应来实现这一目…

常见物联网面试题详解

物联网一直是非常火热的行业&#xff0c;G端如智慧城市、智慧工厂、智慧园区、智慧水利、智慧矿山等行业&#xff0c;都会涉及到物联网&#xff0c;基本都是软硬一体&#xff0c;因此当面试相关企业时&#xff0c;物联网平台是面试企业重点考察的项&#xff0c;小伙伴如果从事相…

什么是FMEA的分析范围?——FMEA软件

免费试用FMEA软件-免费版-SunFMEA FMEA的分析范围广泛而深入&#xff0c;涵盖了产品设计、制造过程、供应链管理以及使用和维修等多个方面。 产品设计是FMEA分析的重要一环。在设计阶段&#xff0c;FMEA能够帮助工程师识别潜在的设计缺陷&#xff0c;并预测这些缺陷可能对产品…

速度围观|使用分布式企业级任务调度平台,到底有多香?

任务调度平台是关键的软件基础设施&#xff0c;专门设计用于自动化、高效和可靠地安排及执行预定的后台任务。谷歌云首席决策工程师Kasim Khan曾提到&#xff1a;“在云计算环境中&#xff0c;自动化和效率是关键。”任务调度平台通过优化资源使用和集中管理功能&#xff0c;提…

准实时数仓搭建指南:以仓储式会员商超为模拟场景

在电商和新零售持续冲击传统零售商超的今天&#xff0c;仓储式会员店反而成功逃脱曾经的“水土不服”预测&#xff0c;业绩一路向好。与此同时&#xff0c;随着人工智能、大数据、智慧物流等技术的不断革新&#xff0c;零售批发的消费场景也进一步拓展&#xff0c;对数据分析的…