Vision Mamba:高效视觉表示学习双向状态空间模型,超越Vision Transformer!

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!

在这里插入图片描述

Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model

引言:探索视觉领域的新方向

在计算机视觉领域,传统的卷积神经网络(CNN)和最近兴起的视觉变换器(ViT)已经取得了显著的成就。然而,随着图像分辨率的不断提高和计算资源的限制,这些模型在处理高分辨率图像时面临着速度和内存效率的挑战。最近的研究表明,状态空间模型(SSM)提供了一种新的视角来处理长序列数据,展示出处理高维视觉数据的潜力。特别是,Mamba模型通过引入时间变化的参数和硬件感知的设计,显著提高了模型的训练和推理效率。这启发我们探索将SSM应用于视觉领域,尤其是在不依赖自注意力机制的情况下,如何有效地处理图像和视频数据。

在这篇博客中,我们将深入探讨如何通过双向状态空间模型(Bidirectional SSM)和位置嵌入来构建一个新的视觉基础模型——Vision Mamba(Vim)。Vim模型不仅在图像分类、对象检测和语义分割等标准视觉任务上超越了现有的最优视觉变换器模型,如DeiT,而且在处理高分辨率图像时,展现出更高的计算和内存效率。通过这些探索,我们希望为未来的视觉模型提供一种新的方向,使其能够更高效地处理大规模和高分辨率的视觉数据。

论文标题: Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model

机构: Huazhong University of Science and Technology, Horizon Robotics, Beijing Academy of Artificial Intelligence

论文链接: Vision Mamba Paper

项目地址: Code & Models - hustvl/Vim

在这里插入图片描述

简介:从Mamba到Vim的演变

1. Mamba模型的基本原理

Mamba模型是基于状态空间模型(SSM)的一种深度学习模型,它通过时间变化的参数和硬件感知的算法来实现高效的训练和推理。Mamba的优越性能表明它是语言建模中Transformer的一个有前途的替代品。Mamba模型的设计灵感来源于经典的卡尔曼滤波器模型,特别擅长捕捉长范围依赖关系,并且能够从并行训练中受益。

2. Vim模型的创新之处

Vim模型是在Mamba的基础上为视觉数据设计的一种新型视觉主干网络。Vim模型的创新之处在于它采用了双向的状态空间模型来处理图像序列,并通过位置嵌入来增强模型对空间信息的感知能力。这使得Vim模型能够在不依赖自我注意力机制的情况下,有效地进行视觉表示学习。此外,Vim模型在处理高分辨率图像时显示出了更高的计算和内存效率,例如,在处理1248×1248分辨率的图像时,Vim的推理速度是DeiT的2.8倍,且节省了86.8%的GPU内存。

在这里插入图片描述

Vim模型的核心设计

1. 双向状态空间模型的引入

Vim模型的核心设计之一是引入了双向状态空间模型(Bi-directional SSM)。这种模型可以从两个方向(前向和后向)处理输入的图像块序列,从而更全面地捕捉图像中的全局上下文信息。这种双向处理方式不仅增强了模型的数据依赖性,还提高了对复杂视觉场景的理解能力。

2. 位置嵌入的作用

在Vim模型中,位置嵌入被用来增强模型对图像中位置信息的感知。通过将位置嵌入加入到线性投影的图像块向量中,Vim能够有效地处理图像序列中的空间关系,这对于密集预测任务尤为重要。位置嵌入的引入使得Vim在进行图像分类、对象检测和语义分割等任务时,能够展现出更好的性能和鲁棒性。

3. 图像块的处理和特征提取

Vim模型首先将输入的二维图像转换为扁平化的二维块,然后通过线性投影将这些块转换为向量,并加入位置嵌入。这些图像块向量随后被送入Vim编码器的多个层中进行处理。在每一层中,图像块向量会经过双向状态空间模型的处理,有效压缩和提取特征,最终输出用于分类或其他下游任务的特征表示。这种对图像块的有效处理和特征提取是Vim模型高效处理高分辨率图像的关键。

在这里插入图片描述

Vim模型的效率分析

1. 计算效率的提升

Vim模型通过采用双向状态空间模型(SSM)和位置嵌入,有效地提高了计算效率。在处理高分辨率图像时,Vim的计算速度是DeiT的2.8倍,同时节省了86.8%的GPU内存。这种效率的提升主要得益于Vim的线性计算复杂性,使其能够处理更长的序列,适用于大规模应用。

2. 内存使用的优化

Vim模型在内存使用上进行了优化,通过重计算中间状态和激活函数输出来降低GPU内存需求。这种方法不仅减少了内存占用,还保持了处理速度,使Vim能够在不牺牲性能的情况下处理更大的数据集和更复杂的模型。

3. 硬件友好的设计

Vim模型的设计充分考虑了现代硬件的特点,通过优化内存输入输出操作和利用SRAM的高带宽特性,减少了对慢速HBM的依赖。这种硬件友好的设计使得Vim在现代GPU上运行更为高效,特别是在处理需要大量并行计算和高内存带宽的视觉任务时。

在这里插入图片描述

实验设置和结果

1. 图像分类任务的实验设置

在ImageNet-1K数据集上,Vim模型采用了标准的数据增强技术和AdamW优化器进行训练。模型训练了300个周期,使用余弦退火调度和初始学习率1×10^-3。此外,Vim还进行了长序列微调,以充分利用其长序列建模能力,进一步提高模型性能。

2. 语义分割和对象检测的性能

在ADE20K和COCO数据集上,Vim模型与常用的UperNet和Cascade Mask R-CNN框架结合使用,展示了其在语义分割和对象检测任务上的优越性能。Vim在不同尺度上均优于DeiT模型,显示了其在处理密集预测任务时的强大能力。

3. 高分辨率图像处理的优势

Vim模型在处理高分辨率图像时展现出显著的速度和内存效率优势。随着图像分辨率的增加,Vim在帧率和GPU内存使用上均优于DeiT,特别是在图像尺寸达到1248×1248时,Vim的表现尤为突出。这一优势使得Vim非常适合用于高分辨率的下游视觉应用,如航空图像、医学图像和计算病理学等领域。

在这里插入图片描述

深入分析:Vim模型的双向SSM设计

1. 双向序列处理的优势

双向序列处理在Vim模型中起到了至关重要的作用。通过在模型中引入双向SSM(State Space Model),Vim能够有效地处理视觉数据中的全局上下文,这是因为双向处理可以同时考虑到图像序列中前后的信息。这种设计使得Vim在进行图像分类、对象检测和语义分割等任务时,能够更准确地捕捉到图像中的细节和上下文信息。

例如,在进行ImageNet分类任务时,Vim模型展示出了优于现有最优视觉Transformer模型DeiT的性能。具体来说,Vim在处理高分辨率图像时,不仅速度提高了2.8倍,还节省了86.8%的GPU内存。这一性能的提升,得益于其双向SSM的设计,使得模型能够更高效地处理长序列数据,从而在不牺牲准确性的情况下提高计算效率。

2. 实验中的表现对比

在多个标准视觉任务中,Vim模型与其他基于SSM的模型以及传统的Transformer模型进行了比较。结果显示,Vim在ImageNet分类任务上超过了DeiT模型,并且在语义分割和对象检测任务中也显示出了更好的性能。具体来说,在ADE20K语义分割任务中,Vim比DeiT高出1.8的mIoU分数;在COCO对象检测任务中,Vim在小型和中型对象检测上也表现更优。

这些实验结果验证了Vim双向SSM设计的有效性,尤其是在需要处理复杂视觉场景和长范围依赖时,Vim能够提供更加精确和全面的视觉理解。
在这里插入图片描述

Vim模型的应用前景

1. 未监督学习和多模态任务

Vim模型的设计允许它在未监督学习环境中进行有效的预训练,这为使用大规模未标记视觉数据提供了可能。此外,由于Vim模型处理视觉数据的方式类似于处理语言数据,这使得它在多模态学习任务中尤其有用,例如可以在视觉-语言预训练(如CLIP风格的预训练)中发挥重要作用。

2. 高分辨率医学图像和远程感测图像的处理

Vim模型在处理高分辨率图像方面显示出显著的优势,这使得它特别适合用于医学图像和远程感测图像的分析。在这些应用中,图像的分辨率通常很高,且需要精确的像素级预测。Vim模型的高效性能可以大大减少处理这些高分辨率图像所需的计算资源和时间,从而在保证分析精度的同时提高处理速度。

总结与未来工作

1. Vim模型的创新点和优势

Vim模型作为一种新型的视觉基础模型,其主要创新点在于采用了双向状态空间模型(SSM)来处理视觉数据,并引入位置嵌入来增强模型对空间信息的感知能力。这一设计使得Vim模型在不依赖自注意力机制的情况下,也能有效地进行全局视觉上下文建模。在图像分类、对象检测和语义分割等任务上,Vim显示出了优于现有视觉Transformer模型(如DeiT)的性能。

Vim模型的主要优势包括:

  • 高效率:Vim在处理高分辨率图像时,相比DeiT模型,具有更高的计算和内存效率。例如,在1248×1248分辨率的图像批处理推理中,Vim的速度是DeiT的2.8倍,且节省了86.8%的GPU内存。
  • 强大的性能:在多个标准视觉任务上,Vim均展现出卓越的性能。例如,在ImageNet分类任务上,Vim的表现超过了DeiT和其他基于SSM的模型。
  • 双向建模:Vim的双向SSM设计使其在密集预测任务中表现出更强的鲁棒性和准确性。

2. 未来研究的方向和潜在应用

未来的研究可以围绕以下几个方向进行:

  • 无监督学习和预训练:探索Vim模型在无监督学习和预训练方面的应用,例如通过掩码图像建模预训练来进一步提升模型的视觉表征能力。
  • 多模态学习:基于Vim模型的架构,探索其在多模态任务中的应用,例如结合CLIP风格的预训练来处理视觉和文本的联合表示。
  • 高分辨率图像分析:利用Vim模型在处理高分辨率图像方面的优势,开展医疗图像、遥感图像和长视频等高分辨率图像的分析工作。

通过这些研究方向的探索,Vim模型有望成为下一代高效且功能强大的视觉基础模型,为计算机视觉领域带来更多的创新和应用。

在这里插入图片描述

关注DeepVisionary 了解更多深度学习前沿科技信息&顶会论文分享!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/685724.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索 Joomla! CMS:打造个性化网站的利器

上周我们的Hostease客户咨询建站服务。他想要用Joomla建站。Hostease提供免费安装Joomla CMS服务。这可以让客户搭建网站变得更加简单和高效。下面是针对Joomla建站的一些使用心得。 Joomla CMS是一款开放自由的软件,为用户提供了创建和维护网站的自由度。它经过全…

基于.NET WinForms 数据CURD功能的实现

使用开发工具 VS 2022 C#,数据库MS SQL SERVER 2019 ,基于NET WinForms,实现数据记录的创建(Create)、更新(Update)、读取(Read)和删除(Delete)等功能。主要控件包括:DataGridView,SqlDataApater , DataTab…

从面试官视角出发,聊聊产品经理的面试攻略

一、请进行自我介绍 这题基本是面试的开胃菜了,估计面试多的,自己答案都能倒背如流啦。 其实自我介绍还是蛮重要的,对我来说主要有 3 个作用:面试准备、能力预估、思维评估。 面试准备:面试官每天都要面 3 ~6 人&am…

三、配置带HybridCLR的ARCore开发环境

预告 本专栏将介绍如何使用这个支持热更的AR开发插件,快速地开发AR应用。 专栏: Unity开发AR系列 插件简介 通过热更技术实现动态地加载AR场景,简化了AR开发流程,让用户可更多地关注Unity场景内容的制作。 “EnvInstaller…”支…

2023年国赛高教杯数学建模C题蔬菜类商品的自动定价与补货决策解题全过程文档及程序

2023年国赛高教杯数学建模 C题 蔬菜类商品的自动定价与补货决策 原题再现 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差,大部分品种如当日未售出,隔日就无法再售。因此,商超通常会根据…

AI编码工具-通义灵码功能实测(二)

AI编码工具-通义灵码功能实测(二) 通义灵码智能问答 在上一篇文章中:https://blog.csdn.net/csdn565973850/article/details/138563670?spm1001.2014.3001.5501 讲述了通义灵码的7大应用场景,这里在使用过程中遇到了一些问题&…

【ArcGIS Pro微课1000例】0058:玩转NetCDF多维数据集

一、NetCDF介绍 NetCDF(network Common Data Form)网络通用数据格式是由美国大学大气研究协会(University Corporation for Atmospheric Research,UCAR)的Unidata项目科学家针对科学数据的特点开发的,是一种面向数组型并适于网络共享的数据的描述和编码标准。NetCDF广泛应…

5.2 Java全栈开发前端+后端(全栈工程师进阶之路)-服务端框架-Spring框架-相信我看这一篇足够

1.Spring框架 1.1.Spring框架简介 Spring是一个基于java的轻量级的、一站式框架。 虽然Spring是一个轻量级框架,但并不表示它的功能少。实际上,spring是一个庞然大物,包罗万象。 时至今日,Spring已经成为java世界中事实上的标准…

教你解决PUBG绝地求生游戏中闪退掉线无法重连回去的问题

《绝地求生》(PUBG),作为一款在全球范围内掀起热潮的战术竞技游戏,以其栩栩如生的战场环境和令人心跳加速的生存冒险博得了广大玩家的青睐。然而,一些玩家在经历了一场惊心动魄的对局后,却面临了一个不大不…

数据库备份可视化网站,配置定时备份

有兴趣的看官老爷可以留下评论私聊。 使用示例👍 网站展示 MySQL mysqldump -h 127.0.0.1 -uroot -p#{PWD} ht > test#{DATE}.sql 在win运行结果:成功生成备份文件 PostgreSQL PostgreSQL export PGPASSWORD#{PWD} pg_dump -h localhost -U postgr…

树与二叉树之间的转换

树转化成二叉树:兄弟相连留长子 1.加线:在兄弟之间加一条线 2.抹线:对每个结点,除了其左孩子外,去除其与其余孩子之间的关系 3.旋转:以树的根结点为轴心,将整树顺时针转45 二叉树转化成为树…

nginx--防盗链

盗链 通过在自己网站里面引用别人的资源链接,盗用人家的劳动和资源 referer referer是记录打开一个页面之前记录是从哪个页面跳转过来的标记信息 正常的referer信息 none:请求报文首部没有referer首部,比如用户直接在浏览器输入域名访问web网站&…