Linux -- 日志

一 日志的重要性

  在之前的编程经历中,如果我们的程序运行出现了问题,都是通过 标准输出 或 标准错误 将 错误信息 直接输出到屏幕上,以此来排除程序中的错误。

  这在我们以往所写的程序中使用没啥问题,但如果出错的是一个不断在运行中的服务,那问题就大了,因为服务器是不间断运行中,直接将 错误信息 输出到屏幕上,会导致错误排查变得极为困难。

  其实,我们可以将各种 错误信息 组织管理,使 每种错误有属于自己的格式(包括时间、文件名及行号、错误等级等),利于排查问题,同时,把这些错误写入一个单独的地方,便于我们查找和阅读(因为错误信息繁多,我们一般写入文件中)。

  这种错误信息的集合,我们便称为日志。

所以接下来我们将会实现一个简易版日志器,用于定向输出我们的日志信息。

二 可变参数

日志需要我们指定格式并输出,依赖于可变参数。

因此我们需要认识一下可变参数的使用,主要是几个宏。

#include <stdarg.h>va_list 	// 指向可变参数列表的指针va_start()	// 将指针指向起始地址va_arg()	// 根据类型,提取可变参数列表中的参数va_end()	// 将指针置为空 

示例,我们通过可变参数实现参数遍历:
 

#include <stdio.h>
#include <stdarg.h>void foreach(int format, ...){va_list p;va_start(p, format);// 接下来就是获取其中的每一个参数for(int i = 0; i < format; i++){printf("%d ", va_arg(p, int));}printf("\n");// 置空va_end(p);
}int main(){foreach(5, 1,2,3,4,5);return 0;
}

这种依靠自己动手的方法比较麻烦,我们也可以借助标准库提供的 vsnprintf() 函数进行参数解析

//头文件:
#include <stdio.h>
//函数声明:
int vsnprintf(char* str, size_t size, const char* format, va_list ap);
  1. char *str ,  把生成的格式化的字符串存放在这里.
  2. size_t size , str可接受的最大字符数 ,防止产生数组越界.
  3. const char *format , 指定输出格式的字符串,它决定了你需要提供的可变参数的类型、个数和顺序。
  4. va_list ap , va_list变量. 

函数功能:将可变参数格式化输出到一个字符数组。

返回值:执行成功,返回最终生成字符串的长度,若生成字符串的长度大于size,则将字符串的前size个字符复制到str,同时将原串的长度返回(不包含终止符);执行失败,返回负值,并置errno. 

#include<iostream>
#include<stdio.h>
#include <stdarg.h>using namespace std;void logtest(int format,...){va_list a;va_start(a,format);char msg[1024];int n = vsnprintf(msg,sizeof(msg),"%d-%d-%d-%d-%d",a);if(n < 0 ){cout<<"可变参数写入失败"<<endl;}cout<<msg<<endl;va_end(a);
}int main(){logtest(5,1,2,3,4,5);return 0;
}

三 日志器的实现

3.1 日志器的等级

日志是有等级的,一般分为五级:

  1. Debug 用于调试
  2. Info 提示信息
  3. Warning 警告
  4. Errorr 错误
  5. Fatal 致命错误

错误等级越高,代表影响越大

当然难免有不明确的错误,可以再添加一级:UnKnow 未知错误。

#include<vector>
#include<string>// 日志等级
enum
{Debug = 0,Info,Warning,Error,Fatal
};string getLevel(int level){//可直接用一个容器存储这些日志等级vector<string> vs = {"<Debug>", "<Info>", "<Warning>", "<Error>", "<Fatal>", "<Unknown>"};//避免非法情况if(level < 0 || level >= vs.size() - 1)return vs[vs.size() - 1];return vs[level];
}

3.2 获取时间

  接下来是获取时间信息,可以通过 time() 函数获取当前时间戳,然后再利用 localtime() 函数构建 struct tm 结构体对象,这个对象会将时间戳解析成 年月日 时分秒 等详细信息,直接获取即可

  strcut tm 结构体的信息如下,细节:年份已经 -1900 了,使用时需要加上 1900;月份从 0 开始,使用时需要 +1。

/* Used by other time functions.  */
struct tm
{int tm_sec;			/* Seconds.	[0-60] (1 leap second) */int tm_min;			/* Minutes.	[0-59] */int tm_hour;			/* Hours.	[0-23] */int tm_mday;			/* Day.		[1-31] */int tm_mon;			/* Month.	[0-11] */int tm_year;			/* Year	- 1900.  */int tm_wday;			/* Day of week.	[0-6] */int tm_yday;			/* Days in year.[0-365]	*/int tm_isdst;			/* DST.		[-1/0/1]*/# ifdef	__USE_BSDlong int tm_gmtoff;		/* Seconds east of UTC.  */const char *tm_zone;		/* Timezone abbreviation.  */
# elselong int __tm_gmtoff;		/* Seconds east of UTC.  */const char *__tm_zone;	/* Timezone abbreviation.  */
# endif
};

可以这样获取当前时间


// 获取当前时间
string getTime(){time_t t = time(nullptr);   //获取时间戳struct tm *st = localtime(&t);    //获取时间相关的结构体char buff[128];//将时间按照特定格式写入字符串中snprintf(buff, sizeof(buff), "%d-%d-%d %d:%d:%d", st->tm_year + 1900, st->tm_mon + 1, st->tm_mday, st->tm_hour, st->tm_min, st->tm_sec); return buff;
}

3.3 日志格式

  日志的格式我们一般可以自己规定,这里我们规定我们日志的格式为:

<日志等级> [时间] [PID] {消息体}

  接下来就是获取进程 PID,这个简单,直接使用 getpid() 函数获取即可,最后是解析参数,需要用到 vsnprintf() 函数,只要传入缓冲区和 va_list 指针,该函数就可以自动解析出参数,并存入缓冲区中  。

void logMessage(int level, const char* format, ...){//截获主体消息char msgbuff[1024];va_list p;va_start(p, format);    //将 p 定位至 format 的起始位置vsnprintf(msgbuff, sizeof(msgbuff), format, p); //自动根据格式进行读取va_end(p);}

形成测试版日志信息函数

//处理信息
void logMessage(int level, const char* format, ...){//日志格式:<日志等级> [时间] [PID] {消息体}string logmsg = getLevel(level);    //获取日志等级logmsg += " " + getTime();  //获取时间logmsg += " [" + to_string(getpid()) + "]";    //获取进程PID//截获主体消息char msgbuff[1024];va_list p;va_start(p, format);    //将 p 定位至 format 的起始位置vsnprintf(msgbuff, sizeof(msgbuff), format, p); //自动根据格式进行读取va_end(p);logmsg += " {" + string(msgbuff) + "}";    //获取主体消息printf("%s\n", logmsg); //这里先打印 方便进行测试} 

  为什么日志消息最后还是向屏幕输出?这样组织日志消息的好处是什么?
  因为现在还在测试阶段,等测试完成后,可以将日志消息存入文件中,做到持久化存储;至于统一组织的好处不言而喻,能够确保每条日志消息都包含必要信息,便于排查错误

3.4 Log.hpp 头文件代码

#pragma once#include <iostream>
#include <string>
#include <vector>
#include <cstdio>
#include <time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdarg.h>using namespace std;enum{Debug = 0,Info,Warning,Error,Fatal
};string getLevel(int level){vector<string> vs = {"<Debug>", "<Info>", "<Warning>", "<Error>", "<Fatal>", "<Unknown>"};//避免非法情况if(level < 0 || level >= vs.size() - 1) {return vs[vs.size() - 1];}return vs[level];
}string getTime(){time_t t = time(nullptr);   //获取时间戳struct tm *st = localtime(&t);    //获取时间相关的结构体char buff[128];snprintf(buff, sizeof(buff), "%d-%d-%d %d:%d:%d", st->tm_year + 1900, st->tm_mon + 1, st->tm_mday, st->tm_hour, st->tm_min, st->tm_sec);return buff;
}//处理信息
void logMessage(int level, const char* format, ...){//日志格式:<日志等级> [时间] [PID] {消息体}string logmsg = getLevel(level);    //获取日志等级logmsg += " " + getTime();  //获取时间logmsg += " [" + to_string(getpid()) + "]";    //获取进程PID//截获主体消息char msgbuff[1024];va_list p;va_start(p, format);    //将 p 定位至 format 的起始位置vsnprintf(msgbuff, sizeof(msgbuff), format, p); //自动根据格式进行读取va_end(p);logmsg += " {" + string(msgbuff) + "}";    //获取主体消息cout<<logmsg<<endl;} 

3.5 写入程序中

这里我们借用我们上一篇文章写的TCP程序

我们先将client.hpp 文件中的错误信息日志化:

//client.hpp
#pragma once #include<iostream>
#include<string>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<arpa/inet.h>
#include<cerrno>
#include<cstring>
#include "err.hpp"
#include <unistd.h>
#include"Log.hpp"namespace My_client{class client{private:/* data *///套接字int _sock;//服务器ipstd::string server_ip;//服务器端口号uint16_t server_port;public:client(const std::string &ip,const uint16_t &port):server_ip(ip),server_port(port){}~client(){}//初始化客户端void InitClient(){//1 创建套接字_sock = socket(AF_INET,SOCK_STREAM,0);if(_sock == -1){logMessage(Fatal, "Create Socket Fail! %s", strerror(errno));exit(SOCKET_ERR);}logMessage(Debug, "Create Sock Succeess! %d", _sock);}// 启动客户端void StartClient(){//填充服务器的sockaddr_int 结构体信息struct sockaddr_in server;socklen_t len=sizeof(server);bzero(&server,len);server.sin_family = AF_INET;server.sin_addr.s_addr = inet_addr(server_ip.c_str());// inet_aton(server_ip.c_str(), &server.sin_addr); // 将点分十进制转化为二进制IP地址的另一种方法server.sin_port = htons(server_port);//尝试重连五次int n=5;while(n){//开始连接int ret = connect(_sock,(const struct sockaddr*)&server,len);if(ret==0){// 连接成功,可以跳出循环break;}// 尝试进行重连logMessage(Warning, "网络异常,正在进行重连... 剩余连接次数: %d", --n);sleep(1);}// 如果剩余重连次数为 0,证明连接失败if(n == 0) {logMessage(Fatal, "连接失败! %s", strerror(errno));close(_sock);exit(CONNECT_ERR);//新加错误标识符}// 连接成功logMessage(Info, "连接成功!");// 进行业务处理Service();}// 业务处理void Service(){char buff[1024];std::string who = server_ip + "-" + std::to_string(server_port);while(true){// 由用户输入信息std::string msg;std::cout << "Please Enter >> ";std::getline(std::cin, msg);// 发送信息给服务器write(_sock, msg.c_str(), msg.size());// 接收来自服务器的信息ssize_t n = read(_sock, buff, sizeof(buff) - 1);if(n > 0) {// 正常通信buff[n] = '\0';std::cout << "Client get: " << buff << " from " << who << std::endl;}else if(n == 0){// 读取到文件末尾(服务器关闭了)logMessage(Error, "Server %s quit! %s", who.c_str(), strerror(errno));close(_sock); // 关闭文件描述符break;}else{// 读取异常logMessage(Error, "Read Fail! %s", strerror(errno));close(_sock); // 关闭文件描述符break;}}}};}

连接成功的例子,显然其它日志信息也一样显示在屏幕中:

改动server.hpp 头文件中的代码 

// server.hpp#pragma once#include<iostream>
#include<string>
#include<functional>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<arpa/inet.h>
#include"err.hpp"
#include<cstring>
#include<unistd.h>
#include<cerrno>
#include"ThreadPool.hpp"
#include"Task.hpp"
#include"Log.hpp"namespace My_server{// 默认端口号const uint16_t default_port = 1111;//全连接队列的最大长度const int backlog = 32;using func_t = std::function<std::string(std::string)>;//前置声明class server;//包含我们所需参数的类型class ThreadData{public:ThreadData(int sock,const std::string&ip,const uint16_t&port,server*ptr):_sock(sock),_clientip(ip),_clientport(port),_current(ptr){}public:int _sock;std::string _clientip;uint16_t _clientport;server* _current;};class server{private:/* data *///套接字int _listensock;//端口号uint16_t _port;// 判断服务器是否结束运行bool _quit;// 外部传入的回调函数func_t _func;public:server(const func_t &func,const uint16_t &port = default_port):_func(func),_port(port),_quit(false){}~server(){}//初始化服务器void InitServer(){//1 创建套接字_listensock = socket(AF_INET,SOCK_STREAM,0);if(_listensock == -1){//绑定失败logMessage(Fatal, "Create Socket Fail! %s", strerror(errno));exit(SOCKET_ERR);}logMessage(Debug, "Create Sock Succeess! %d", _listensock);//2 绑定端口号和IP地址struct sockaddr_in local;bzero(&local,sizeof(local));local.sin_family = AF_INET;local.sin_port = htons(_port);local.sin_addr.s_addr = INADDR_ANY;if(bind(_listensock,(const sockaddr*)&local,sizeof(local))){logMessage(Fatal, "Bind IP&&Port Fali %s", strerror(errno));exit(BIND_ERR);}//3 开始监听if(listen(_listensock,backlog)== -1){logMessage(Fatal, "Listen Fail: %s", strerror(errno));//新增一个报错exit(LISTEN_ERR);}logMessage(Debug, "Listen Success!");}//启动服务器void StartServer(){while(!_quit){//1 处理连接请求struct sockaddr_in client;socklen_t len = sizeof(client);int sock = accept(_listensock,(struct sockaddr*)&client,&len);//2 如果连接失败 继续尝试连接if(sock == -1){logMessage(Warning,"Accept Fail!: %s",strerror(errno));continue;}// 连接成功,获取客户端信息std::string clientip = inet_ntoa(client.sin_addr);uint16_t clientport = ntohs(client.sin_port);//std::cout<<"Server accept"<< clientip + "-"<< clientport <<sock<<" from "<<_listensock << "success!"<<std::endl;logMessage(Debug,"Server accept %s - %d %d from %d success",clientip.c_str(),clientport,sock,_listensock);// 3.构建任务对象 注意:使用 bind 绑定 this 指针My_task::Task t(sock, clientip, clientport, std::bind(&server::Service, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3));// 4.通过线程池操作句柄,将任务对象 push 进线程池中处理//s//std::cout<<std::endl<<"push Task"<<std::endl;My_pool::ThreadPool<My_task::Task>::getInstance()->pushTask(t);}}void Service(int sock,const std::string &clientip,const uint16_t &clientport){char buff[1024];std::string who = clientip + "-" + std::to_string(clientport);while(true){// 以字符串格式读取,预留\0的位置ssize_t n = read(sock,buff,sizeof(buff)-1);if(n>0){//读取成功buff[n]='\0';logMessage(Debug,"Server get: %s from %s",buff,who.c_str());//std::cout<<"Server get: "<< buff <<" from "<<who<<std::endl;//实际处理可以交给上层逻辑指定std::string respond = _func(buff);write(sock,buff,strlen(buff));}else if(n==0){//表示当前读到了文件末尾,结束读取//std::cout<<"Client "<<who<<" "<<sock<<" quit!"<<std::endl;logMessage(Error,"Client %s %d quit!",who.c_str(),sock);close(sock);}else{// 读取出问题(暂时)logMessage(Error, "Read Fail! %s", strerror(errno));close(sock); // 关闭文件描述符break;}    }}};}

示例:

 3.6 持久化存储

所谓持久化存储就是将日志消息输出至文件中,修改 log.hpp 中的代码即可

  • 指定日志文件存放路径
  • 打开文件,将日志消息追加至文件中

log.hpp 日志头文件

#pragma once#include <iostream>
#include <string>
#include <vector>
#include <cstdio>
#include <time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdarg.h>using namespace std;enum{Debug = 0,Info,Warning,Error,Fatal
};static const string file_name = "TCP.Log"; //在当前目录下创建一个TCP.Log文件string getLevel(int level){vector<string> vs = {"<Debug>", "<Info>", "<Warning>", "<Error>", "<Fatal>", "<Unknown>"};//避免非法情况if(level < 0 || level >= vs.size() - 1) {return vs[vs.size() - 1];}return vs[level];
}string getTime(){time_t t = time(nullptr);   //获取时间戳struct tm *st = localtime(&t);    //获取时间相关的结构体char buff[128];snprintf(buff, sizeof(buff), "%d-%d-%d %d:%d:%d", st->tm_year + 1900, st->tm_mon + 1, st->tm_mday, st->tm_hour, st->tm_min, st->tm_sec);return buff;
}//处理信息
void logMessage(int level, const char* format, ...){//日志格式:<日志等级> [时间] [PID] {消息体}string logmsg = getLevel(level);    //获取日志等级logmsg += " " + getTime();  //获取时间logmsg += " [" + to_string(getpid()) + "]";    //获取进程PID//截获主体消息char msgbuff[1024];va_list p;va_start(p, format);    //将 p 定位至 format 的起始位置vsnprintf(msgbuff, sizeof(msgbuff), format, p); //自动根据格式进行读取va_end(p);logmsg += " {" + string(msgbuff) + "}";    //获取主体消息//持久化。写入文件中FILE* fp = fopen(file_name.c_str(), "a");   //以追加的方式写入if(fp == nullptr)return;   //不太可能出错fprintf(fp, "%s\n", logmsg.c_str());fflush(fp); //手动刷新一下fclose(fp);} 

示例:


四 守护进程

守护进程 的意思就是让进程不间断的在后台运行,即便是 bash 关闭了,也能照旧运行。守护进程 就是现实生活中的服务器,因为服务器是需要 24H 不间断运行的

4.1.会话、进程组、进程

  当前我们的程序在启动后属于 前台进程前台进程 是由 bash 进程替换而来的,因此会导致 bash 暂时无法使用.

 但是我们的server程序此时又没什么用,还影响着原本bash进程的使用,我们该怎么做呢?

  如果在启动程序时,带上 & 符号,程序就会变成 后台进程后台进程 并不会与 bash 进程冲突,bash 仍然可以使用 

  后台进程 也可以实现服务器不间断运行,但问题在于 如果当前 bash 关闭了,那么运行中的后台进程也会被关闭,最好的解决方案是使用 守护进程

  在正式学习 守护进程 之前,需要先了解一组概念:会话、进程组、进程

  分别运行一批 前台、后台进程,并通过指令查看进程运行情况  。

sleep 1000 | sleep 2000 | sleep 3000 &sleep 100 | sleep 200 | sleep 300ps -ajx | head -1 && ps -ajx | grep sleep | grep -v grep

 

其中 会话 == SID

进程组 ==  PGID

进程 ==  PID

  显然,sleep 1000、2000、3000 处于同一个管道中(有血缘关系),属于同一个 进程组,所以他们的 PGID 都是一样的,都是 4261;

  至于 sleep 100、200、300 属于另一个 进程组,PGID 为 4308;再仔细观察可以发现 每一组的进程组 PGID 都与当前组中第一个被创建的进程 PID 一致,这个进程被称为 组长进程。

  无论是 后台进程 还是 前台进程都是从同一个 bash 中启动的,所以它们处于同一个 会话 中,SID 都是 1939,并且关联的 终端文件 TTY 都是 pts/1。

  会话 >= 进程组 >= 进程


Linux 中一切皆文件,终端文件也是如此,这里的终端其实就是当前 bash 输出结果时使用的文件(也就是屏幕,屏幕也是一个文件),终端文件位于 dev/pts 目录下,如果向指定终端文件中写入数据,那么对方也可以直接收到
(关联终端文件说白了就是打开了文件,一方写,一方读,不就是管道吗)

 

在同一个 bash 中启动前台、后台进程,它们的 SID 都是一样的,属于同一个 会话,关联了同一个 终端 (SID 其实就是 bash 的 PID

我们使用 XShell 等工具登录 Linux 服务器时,会在服务器中创建一个 会话bash),可以在该会话内创建 进程,当 进程 间有关系时,构成一个 进程组组长 进程的 PID 就是该 进程组 的 PGID。

  在同一个会话中,只允许一个前台进程在运行,默认是 bash,如果其他进程运行了,bash 就会变成后台进程(暂时无法使用),让出前台进程这个位置(后台进程与前台进程之前是可以进程切换)


如何将一个 后台进程 变成 前台进程?
首先通过指令查看当前 会话 中正在运行的 后台进程,获取 任务号

jobs

查看当前会话中所有的后台进程

接下来通过 任务号 将 后台进程 变成 前台进程,此时 bash 就无法使用了。  

fg 后台进程号

那如何将 前台进程 变成 后台进程 ?

首先是通过 ctrl + z 发送 19 号 SIGSTOP 信号,暂停正在运行中的 前台进程.

键盘输入 ctrl + z

然后通过 任务号,可以把暂停中的进程变成 后台进程.

4.2 守护进程化

一般网络服务器为了不受到用户登录重启的影响,会以 守护进程 的形式运行,有了上面那一批前置知识后,就可以很好的理解 守护进程 的本质了

守护进程:进程单独成一个会话,并且以后台进程的形式运行

说白了就是让服务器不间断运行,可以直接使用 daemon() 函数完成 守护进程化。

#include <unistd.h>int daemon(int nochdir, int noclose);

参数解读:

  1. nochdir 改变进程的工作路径
  2. noclose 重定向标准输入、标准输出、标准错误

返回值:成功返回 0,失败返回 -1

一般情况下,daemon() 函数的两个参数都只需要传递 0,默认工作在 / 路径下,默认重定向至 /dev/null

/dev/null 就像是一个 黑洞,可以把所有数据都丢入其中,相当于丢弃数据

使用 damon() 函数使之前的server.cc 守护进程化

server.cc 服务器源文件

//智能指针头文件
#include<memory>
#include"server.hpp"
#include<string>using namespace My_server;
// 业务处理回调函数(字符串回响)其实这里啥也不干
std::string echo(std::string request){return request;
}int main(){// 直接守护进程化daemon(0, 0);std::unique_ptr<server> usvr(new server(echo));usvr->InitServer();usvr->StartServer();return 0;
}

   现在服务器启动后,会自动变成 后台进程,并且自成一个 新会话,归操作系统管(守护进程 本质上是一种比较坚强的 孤儿进程

  注意: 现在标准输出、标准错误都被重定向至 /dev/null 中了,之前向屏幕输出的数据,现在都会直接被丢弃,如果想保存数据,可以选择使用日志。

可见内容被吞噬了(舍弃) 

如果想终止 守护进程,需要通过 kill pid 杀死目标进程 。

  使用系统提供的接口一键 守护进程化 固然方便,不过大多数程序员都会选择手动 守护进程化(可以根据自己的需求定制操作)

  原理是 使用 setsid() 函数新设一个会话,谁调用,会话 SID 就是谁的,成为一个新的会话后,不会被之前的会话影响。

#include <unistd.h>pid_t setsid(void);

返回值:成功返回该进程的 pid,失败返回 -1

注意: 调用该函数的进程,不能是组长进程,需要创建子进程后调用

手动实现守护进程时需要注意以下几点:

  1. 忽略异常信号
  2. 0、1、2 要做特殊处理(文件描述符)
  3. 进程的工作路径可能要改变(从用户目录中脱离至根目录)

具体实现步骤如下:

1、忽略常见的异常信号:SIGPIPE、SIGCHLD

2、如何保证自己不是组长? 创建子进程 ,成功后父进程退出,子进程变成守护进程

3、新建会话,自己成为会话的 话首进程

4、(可选)更改守护进程的工作路径:chdir

5、处理后续对于 0、1、2 的问题

对于 标准输入、标准输出、标准错误 的处理方式有两种

暴力处理:直接关闭 fd

优雅处理:将 fd 重定向至 /dev/null,也就是 daemon() 函数的做法

这里我们选择后者,守护进程 的函数实现如下:

Daemon.hpp 守护进程头文件

#pragma once#include <iostream>
#include <cstring>
#include <cerrno>
#include <signal.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "err.hpp"
#include "Log.hpp"static const char *path = "/home/Manta/cpp/Internet/Log/Log1";void Daemon()
{// 1、忽略常见信号signal(SIGPIPE, SIG_IGN);signal(SIGCHLD, SIG_IGN);// 2、创建子进程,自己退休pid_t id = fork();if (id > 0)exit(0);else if (id < 0){// 子进程创建失败logMessage(Error, "Fork Fail: %s", strerror(errno));exit(FORK_ERR);}// 3、新建会话,使自己成为一个单独的组pid_t ret = setsid();if (ret == -1){// 守护化失败logMessage(Error, "Setsid Fail: %s", strerror(errno));exit(SETSID_ERR);}// 4、更改工作路径int n = chdir(path);if (n == -1){// 更改路径失败logMessage(Error, "Chdir Fail: %s", strerror(errno));exit(CHDIR_ERR);}// 5、重定向标准输入输出错误int fd = open("/dev/null", O_RDWR);if (fd == -1){// 文件打开失败logMessage(Error, "Open Fail: %s", strerror(errno));exit(OPEN_ERR);}// 重定向标准输入、标准输出、标准错误dup2(fd, 0);dup2(fd, 1);dup2(fd, 2);close(fd);
}

 

当然相应的错误码也需要更新

err.hpp 错误码头文件

#pragma onceenum
{USAGE_ERR = 1,SOCKET_ERR,BIND_ERR,LISTEN_ERR,CONNECT_ERR,FORK_ERR,SETSID_ERR,CHDIR_ERR,OPEN_ERR
};

StartServer() 服务器启动函数 — 位于 server.hpp 服务器头文件中

现在服务器在启动后,会自动新建会话,以 守护进程 的形式运行

杀死守护进程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/685751.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型常用微调数据集

文章目录 指令微调数据集人类对齐数据集 为了增强模型的任务解决能力&#xff0c;大语言模型在预训练之后需要进行适应性微调&#xff0c;通常涉及两个主要步骤&#xff0c;即指令微调&#xff08;有监督微调&#xff09;和对齐微调。 指令微调数据集 在预训练之后&#xff0c…

博特激光:355nm高精度紫外激光打标机带来极致工艺

紫外激光打标机在现代制造业和技术中的应用&#xff0c;的确在准确度和精密度方面带来了革命性的提高。特别是在微电子、半导体、医疗器械、高端消费品等需要高精度、高清晰打标的行业&#xff0c;紫外激光打标机以其独特的优势&#xff0c;赋予产品极致的工艺品质。 以下是UV激…

瑞友天翼应用虚拟化系统appsave SQL注入漏洞

网络测绘 fofa:title"瑞友应用虚拟化系统" 漏洞描述 瑞友天翼应用虚拟化系统是西安瑞友信息技术资讯有限公司研发的具有自主知识产权&#xff0c;基于服务器计算架构的应用虚拟化平台。 瑞友天翼应用虚拟化系统中的/Home/Controller/AdminController 存在 appsav…

PyQt6--Python桌面开发(6.QLineEdit单行文本框)

QLineEdit单行文本框 import sys import time from PyQt6.QtGui import QValidator,QIntValidator from PyQt6.QtWidgets import QApplication,QLabel,QLineEdit from PyQt6 import uicif __name__ __main__:appQApplication(sys.argv)uiuic.loadUi("./QLine单行文本框.u…

Kubernetes核心概念基本操作

1.1 Namespace命名空间 1.1.1 Namespace核心概念 Kubernetes 的 Namespace&#xff08;命名空间&#xff09;是一种用于创建逻辑隔离分区的机制&#xff0c;它的主要作用是用来实现多套环境的资源隔&#xff0c;它允许用户在同一个物理集群中模拟出多个虚拟集群的效果。以下是…

性能监测--jemeter

过年时相亲&#xff0c;遇到了一个很好的女生&#xff0c;生活的中心重心有所改变&#xff0c;好久没上线了。今天有时间&#xff0c; 公司让做性能&#xff0c;用到jemeter&#xff0c;所以简单记录一下 部署环境&#xff1a; 安装java 设置环境变量&#xff1a; 找到jdk…

Microsoft Project使用简明教程

一.认识Microsoft Project Microsoft Project 是微软公司开发的项目管理软件&#xff0c;用于规划、协调和跟踪项目的进度、资源和预算&#xff0c;如下图所示&#xff0c;左边是任务的显示&#xff0c;右边是一个日程的显示图&#xff0c;最上方的长方形处在我们项目设定日程…

一文带你了解OSPF 七种LSA类型,很全!

大家好&#xff0c;今天我们 带大家了解一下OSPF的七种LSA类型。 在OSPF&#xff08;开放式最短路径优先&#xff09;协议中&#xff0c;LSA&#xff08;链路状态通告&#xff09;是一种至关重要的数据格式&#xff0c;专门用于描述路由信息。它包含了路由器或网络的各种状态信…

【Linux】编写一个简易的shell

思维导图 学习目标 将简易的shell代码进行编写。 一、阐述shell的基本思路 在进程程序替换中&#xff0c;我们可以将一个指令交给子进程&#xff0c;让子进程去完成这个指令。如果这个命令是一个内建命令&#xff0c;我们需要将这个命令交给bash进行处理。 大致思路是&#xf…

自然资源-地质勘查工作的流程梳理

自然资源-地质勘查工作的流程梳理 地质勘查从广义上可理解为地质工作&#xff0c;地质队员就好像是国家宝藏的“寻宝人”&#xff0c;通过地质勘查&#xff0c;为国家找矿&#xff0c;以保障国家能源资源安全和服务国计民生&#xff0c;发挥着地质工作在国民经济建设中的基础性…

Spring框架学习笔记(一):Spring基本介绍(包含IOC容器底层结构)

1 官方资料 1.1 官网 https://spring.io/ 1.2 进入 Spring5 下拉 projects, 进入 Spring Framework 进入 Spring5 的 github 1.3 在maven项目中导入依赖 <dependencies><!--加入spring开发的基本包--><dependency><groupId>org.springframework<…

网络编程套接字和传输层tcp,udp协议

认识端口号 我们知道在网络数据传输的时候&#xff0c;在IP数据包头部有两个IP地址&#xff0c;分别叫做源IP地址和目的IP地址。IP地址是帮助我们在网络中确定最终发送的主机&#xff0c;但是实际上数据应该发送到主机上指定的进程上的&#xff0c;所以我们不仅要确定主机&…