凸优化理论学习一|最优化及凸集的基本概念

文章目录

  • 一、优化问题
    • (一)数学优化
    • (二)凸优化
  • 二、凸集
    • (一)一些标准凸集
    • (二)保留凸性的运算
    • (三)正常锥和广义不等式
    • (四)分离和支撑超平面


一、优化问题

(一)数学优化

从本质上讲,人工智能的目标就是最优化——在复杂环境中与多体交互中做出最优决策。几乎所有的人工智能问题都会归结为一个优化问题。

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: g i ( x ) = 0 , i = 1 , . . . , m g_i(x)=0,i=1,...,m gi(x)=0i=1,...,m

将最优化问题用于求解最佳决策时, x x x代表决策,约束用于限制决策或对结果施加条件
将最优化问题用于求解最优模型时, x x x 表示模型中的参数,约束对模型参数提出要求(例如,非负性)

最优化问题一般情况下不能得到完全的解决,但是可以尝试近似地解决它,而且通常无伤大雅。这个问题的例外情况是:凸优化问题。

一般非凸问题的传统技术通常会涉及到一定的妥协:

  • 局部优化方法(非线性规划)
    • 在其附近的可行点中找到一个使 f 0 f_0 f0 最小的点
    • 可以处理大问题,例如神经网络训练
    • 需要初始猜测,并且通常需要算法参数微调
    • 不提供有关找到的点有多次优的信息
  • 全局优化方法
    • 找到(全局)解决方案
    • 最坏情况的复杂性随着问题的规模呈指数级增长
    • 通常基于解决凸子问题

(二)凸优化

凸优化问题是特殊形式的优化问题,包括线性规划 (LP)、二次规划 (QP) 等,我们通常能够可靠、高效地解决这些问题。

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: A x = b Ax=b Ax=b

凸优化问题与最优化问题的对比:

  • 凸优化问题的等式约束是线性的
  • f 0 , . . . , f m f_0,..., f_m f0,...,fm是凸的: θ ∈ [ 0 , 1 ] , f i ( θ x + ( 1 − θ ) y ) ≤ θ f i ( x ) + ( 1 − θ ) f i ( y ) \theta \in [0,1],f_i(\theta x+(1-\theta)y)\leq\theta f_i(x)+(1-\theta)f_i(y) θ[0,1],fi(θx+(1θ)y)θfi(x)+(1θ)fi(y)

二、凸集

(一)一些标准凸集

仿射集包含通过集合中任意两个不同点的线(通过 x 1 x_1 x1 x 2 x_2 x2两点的线: x = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R x=\theta x_1+(1-\theta)x_2,\theta \in R x=θx1+(1θ)x2,θR

  • 函数形式为f=Ax+b,则称函数是仿射的,即线性函数加常数的形式。
  • 比如线性方程组的解 { x ∣ A x = b } \{x |Ax = b\} {xAx=b},并且每个仿射集都可以表示为线性方程组的解集
    在这里插入图片描述

凸集包含集合中任意两点之间的线段( x 1 x_1 x1 x 2 x_2 x2两点间的线段: x = θ x 1 + ( 1 − θ ) x 2 , 0 ≤ θ ≤ 1 x=\theta x_1+(1-\theta)x_2,0\leq\theta\leq1 x=θx1+(1θ)x2,0θ1

  • 凸集满足对于 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq1 x1,x2C,0θ1,有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 以下为一个凸集和两个非凸集的示意:
    在这里插入图片描述

为什么 x = θ x 1 + ( 1 − θ ) x 2 x=\theta x_1+(1-\theta)x_2 x=θx1+(1θ)x2可以表示任意两点连接线段的所有点?将上式展开得:
x = θ x 1 + ( 1 − θ ) x 2 = θ x 1 + x 2 − θ x 2 = θ ( x 1 − x 2 ) + x 2 x=\theta x_1+(1-\theta)x_2=\theta x_1+x_2-\theta x_2=\theta(x_1-x_2)+x_2 x=θx1+(1θ)x2=θx1+x2θx2=θ(x1x2)+x2
在这里插入图片描述

凸包: S 中所有点的凸组合的集合( x 1 , . . . , x k x_1,...,x_k x1,...,xk的凸组合: x = θ 1 x 1 + θ 2 x 2 + . . . + θ k x k x=\theta_1 x_1+\theta_2 x_2+...+\theta_k x_k x=θ1x1+θ2x2+...+θkxk,其中 θ 1 + . . . + θ k = 1 , θ i ≥ 0 \theta_1+...+\theta_k =1,\theta_i \geq 0 θ1+...+θk=1,θi0
在这里插入图片描述
凸锥体: 包含集合中点的所有圆锥组合的集合( x 1 x_1 x1 x 2 x_2 x2的圆锥组合: x = θ 1 x 1 + θ 2 x 2 x=\theta_1 x_1+\theta_2 x_2 x=θ1x1+θ2x2,且 θ 1 ≥ 0 , θ 2 ≥ 0 \theta_1\geq0,\theta_2\geq0 θ10,θ20

在这里插入图片描述

超平面: 形式为 { x ∣ a T x = b } \{x | a^T x = b\} {xaTx=b}的集合,其中 a ≠ 0 a ≠ 0 a=0半空间: 形式为 { x ∣ a T x ≤ b } \{x | a^T x \leq b\} {xaTxb}的集合,其中 a ≠ 0 a ≠ 0 a=0。(a是法向量,超平面是仿射和凸的;半空间是凸的)
在这里插入图片描述

欧几里得球: B ( x c , r ) = { x ∣ ∣ ∣ x − x c ∣ ∣ 2 ≤ r } = { x c + r u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } B(x_c,r)=\{x|\ ||x-x_c||_2\leq r\} = \{x_c+ru|\ ||u||_2\leq1\} B(xc,r)={x ∣∣xxc2r}={xc+ru ∣∣u21}

椭球: { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } = { x c + r u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } = { x c + A u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } \{x|\ (x-x_c)^T P^{-1}(x-x_c)\leq 1\} = \{x_c+ru|\ ||u||_2\leq1\} = \{x_c+Au|\ ||u||_2\leq1\} {x (xxc)TP1(xxc)1}={xc+ru ∣∣u21}={xc+Au ∣∣u21},其中 P ∈ S + + n P\in S^n_{++} PS++n,也就是说P 对称正定,A平方且非奇异。

中心为 x c x_c xc,半径为 r r r 的标准球: { x ∣ ∣ ∣ x − x c ∣ ∣ ≤ r } \{x|\ ||x − x_c|| ≤ r\} {x ∣∣xxc∣∣r}

标准锥: { ( x , t ) ∣ ∣ ∣ x ∣ ∣ ≤ t } \{(x, t) |\ ||x||≤t\} {(x,t) ∣∣x∣∣t}

欧几里得范数锥: { ( x , t ) ∣ ∣ ∣ x ∣ ∣ 2 ≤ t } \{(x, t) |\ ||x||_2≤t\} {(x,t) ∣∣x2t}

多面体 是有限多个线性不等式和等式的解集,也是有限数量的半空间和超平面的交集。 { x ∣ A x ≤ b , C x = d } \{x| Ax\leq b,Cx=d\} {xAxb,Cx=d}

(二)保留凸性的运算

证明集合 C 凸性的方法:

  • 基于定义:如果 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq 1 x1,x2C,0θ1,则有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 使用凸函数;
  • 表明 C 是通过保留凸性的操作从简单凸集(超平面、半空间、范数球……)获得的;

交运算:(任意数量的)凸集的交集是凸的。
在这里插入图片描述

仿射映射:凸集的仿射映射也是凸的。(函数形式为f=Ax+b,则称函数是仿射的,即线性函数加常数的形式。)

在这里插入图片描述(仿射变换就认为是一个矩阵变换,足球可以映射成一个橄榄球,依然是凸集。)

由仿射变换推出凸集的和也是凸集:
在这里插入图片描述

透视函数:凸集在透视下的像和逆像都是凸的(透视函数实际上就是对向量进行伸缩规范化)
在这里插入图片描述

线性分数函数是仿射映射函数和透视变换的复合函数,依然还是保凸运算,凸集在线性分数函数下的像和逆像都是凸的。从联合概率到条件概率的变换是一个线性分数函数。

在这里插入图片描述

(三)正常锥和广义不等式

正常锥的定义:如果凸锥体 K ⊆ R n K⊆R_n KRn满足如下条件,则称锥 K ⊆ R n K⊆R_n KRn为正常锥。

  • K是凸的
  • K是闭的
  • K是实的,即K有非空的内部
  • K是尖的,即K不包含任何直线

在这里插入图片描述

广义不等式满足类似普通不等式的性质,如传递性,反对称性等等。 广义不等式和普通不等式最大的区别是不是任意两点都是可比的。即 x ≤ y x≤y xy y ≤ x y≤x yx对于普通不等式二者必居其一。而对于广义不等式这不一定成立。所以最小,最大这些概念对于广义不等式变得很复杂。

(四)分离和支撑超平面

分离超平面:利用超平面将两个不相交的凸集分离开来,即得到超平面分离定理。
在这里插入图片描述在这里插入图片描述
支撑超平面:如果C是凸的,那么在C的每个边界点都存在一个支持超平面。
在这里插入图片描述在这里插入图片描述支撑超平面不完全逆定理:如果一个集合是闭的,具有非空内部并且其边界上每个点均存在支撑超平面,那么它是凸的。

参考:
凸优化之保凸运算
广义不等式
【最优化理论与算法】数学预备知识、凸集和凸函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/685926.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Adobe Premiere Pro安装

一、安装包下载 链接:https://pan.baidu.com/s/1aYqTSQQutDguKYZE-yNHiw?pwd72l8 提取码:72l8 二、安装步骤 1.鼠标右击【Pr2024(64bit)】压缩包(win11及以上系统需先点击“显示更多选项”)【解压到 Pr2024(64bit)】。 2.打开…

5g视频彩信和普通彩信有什么区别

5G视频彩信和普通彩信有什么区别 随着科技的不断进步,手机通信技术也在迅速发展。5G技术的出现,为彩信传输提供了更高的速度和更广的带宽。在这种背景下,5G视频彩信和普通彩信成为了人们关注的焦点。本文将探讨这两种彩信的区别。 5G视频彩信…

数学:人工智能领域的基石与灵魂

在科技日新月异的今天,人工智能(AI)已经渗透到了我们生活的方方面面,从智能家居、智能医疗到自动驾驶、智能客服,AI无处不在。然而,当我们赞叹于AI的神奇时,却往往忽视了其背后的推动力——数学…

力扣爆刷第135天之数组五连刷(双指针快慢指针滑动窗口)

力扣爆刷第135天之数组五连刷(双指针快慢指针滑动窗口) 文章目录 力扣爆刷第135天之数组五连刷(双指针快慢指针滑动窗口)一、704. 二分查找二、27. 移除元素三、977. 有序数组的平方四、209. 长度最小的子数组五、59. 螺旋矩阵 II…

力扣HOT100 - 84. 柱状图中最大的矩形

解题思路&#xff1a; 单调栈 对于一个高度height[ i ]&#xff0c;找左右两边均严格小于它的值。 class Solution {public int largestRectangleArea(int[] heights) {int n heights.length;int[] left new int[n];int[] right new int[n];Deque<Integer> mono_st…

Windows下安装Node.js、npm和electronic,并运行一个Hello, World!脚本程序

20240510 By wdhuag 目录 简介&#xff1a; 参考&#xff1a; 安装Node.js 安装npm 配置npm&#xff1a; 修改包存放目录和缓存目录 切换镜像源 使用 nrm 切换镜像源 安装Electron 运行一个Hello, World!脚本程序 安装Yarn JavaScript 指南 简介&#xff1a; Nod…

苹果电脑免费第三方软件CleanMyMac X2025电脑版垃圾清理软件神器

Mac电脑用户在长时间使用电脑之后&#xff0c;时常会看到“暂存盘已满”的提示&#xff0c;这无疑会给后续的电脑使用带来烦恼&#xff0c;那么苹果电脑暂存盘已满怎么清理呢&#xff0c;下面将给大家带来一些干货帮你更好地解决这个问题。 CleanMyMac X2024全新版下载如下: h…

解锁楼宇自动化新维度西门子Insight+BACnet IP I/O控制器

数字城市的楼宇自动化已不再是一个遥不可及的概念&#xff0c;而是成为了现代建筑的标配。特别是在大型商业综合体、高端写字楼和公共设施中&#xff0c;高效的楼宇管理系统是确保环境舒适度与能源效率的关键。当提及楼宇自动化领域的佼佼者&#xff0c;西门子Insight楼宇自动化…

DiskCatalogMaker for Mac:高效管理磁盘文件助手

DiskCatalogMaker for Mac&#xff0c;助您高效管理磁盘文件&#xff0c;让文件整理变得轻而易举&#xff01;这款软件以其出色的性能和人性化的设计&#xff0c;赢得了广大Mac用户的喜爱。 DiskCatalogMaker支持多种磁盘格式&#xff0c;让您轻松管理硬盘、U盘、光盘等存储设备…

Arduino-ILI9341驱动介绍二

Arduino-ILI9341驱动介绍二 1.概述 第一篇文章介绍了Arduino-点亮TFT触摸屏&#xff0c;没有介绍如何改变屏幕的内容。这篇文章介绍Arduino-使用ILI9341驱动控制TFT触摸屏原理和ILI9341驱动源代码设计原理以及常用函数 2.Arduino控制TFT触控屏原理 Arduino使用什么方式控制…

Transformers中加载预训练模型的过程剖析

使用HuggingFace的Transformers库加载预训练模型来处理下游深度学习任务很是方便,然而加载预训练模型的方法多种多样且过程比较隐蔽,这在一定程度上会给人带来困惑。因此,本篇文章主要讲一下使用不同方法加载本地预训练模型的区别、加载预训练模型及其配置的过程,藉此做个记…

音频数字信号I2S一些知识理解

(1)I2S单向基本传输需要几根线传输音频信号? 3根线 LRCK SCLK(也叫BLK) DATA(单向) (2)如何理解I2S MASTER或者SLAVE的模式&#xff1f; codec的i2s作为slave mode,LRCK和SCLK来自于soc主控端,codec端自动检测MCLK和LRCK codec的i2s作为master mode,codec通过MCLK LRCLKDIV…