SparkSQL编程入口和模型与SparkSQL基本编程

SparkSQL编程入口和模型

SparkSQL编程模型

主要通过两种方式操作SparkSQL,一种就是SQL,另一种为DataFrame和Dataset。

1)SQL:SQL不用多说,就和Hive操作一样,但是需要清楚一点的是,SQL操作的是表,所以要想用SQL进行操作,就需要将SparkSQL对应的编程模型转化成为一张表才可以。同时支持,通用sql和hivesql。

2)DSL(DataFrame&DataSet):在支持SQL编程的同时,方便大家使用函数式编程的思想,类似sparkcore的编程模式,sparksql也支持DSL(Domain Specified Language,领域专用语言,或者特定领域语言),即通过DataFrame和Dataset来支持类似RDD的编程。

DataFrame和Dataset是SparkSQL中的编程模型。DataFrame和Dataset我们都可以理解为是一张mysql中的二维表,表有什么?表头,表名,字段,字段类型。RDD其实说白了也是一张二维表,但是这张二维表相比较于DataFrame和Dataset却少了很多东西,比如表头,表名,字段,字段类型,只有数据。

Dataset是在spark1.6.2开始出现的api,DataFrame是1.3的时候出现的,早期的时候DataFrame叫SchemaRDD,SchemaRDD和SparkCore中的RDD相比较,就多了Schema,所谓约束信息,元数据信息。

一般的,将RDD称之为Spark体系中的第一代编程模型;DataFrame比RDD多了一个Schema元数据信息,被称之为Spark体系中的第二代编程模型;Dataset吸收了RDD的优点(强类型推断和强大的函数式编程)和DataFrame中的优化(SQL优化引擎,内存列存储),成为Spark的最新一代的编程模型。

RDD V.S. DataFrame V.S. Dataset

RDD

弹性分布式数据集,是Spark对数据进行的一种抽象,可以理解为Spark对数据的一种组织方式,更简单些说,RDD就是一种数据结构,里面包含了数据和操作数据的方法。从字面上就能看出的几个特点:

1)弹性:数据可完全放内存或完全放磁盘,也可部分存放在内存,部分存放在磁盘,并可以自动切换。RDD出错后可自动重新计算(通过血缘自动容错)。可checkpoint(设置检查点,用于容错),可persist或cache(缓存),里面的数据是分片的(也叫分区,partition),分片的大小可自由设置和细粒度调整。

2)分布式:RDD中的数据可存放在多个节点上。

3)数据集:即数据的集合,相对于DataFrame和Dataset,RDD是Spark最底层的抽象,目前是开发者用的最多的,但逐步会转向DataFrame和Dataset(当然,这是Spark的发展趋势)调整。

DataFrame

理解了RDD,DataFrame就容易理解些,DataFrame的思想来源于Python的pandas库,RDD是一个数据集,DataFrame在RDD的基础上加了Schema(描述数据的信息,可以认为是元数据,DataFrame曾经就有个名字叫SchemaRDD)。

假设RDD中的两行数据长这样,如图-5所示。

图-5 rdd数据

那么DataFrame中的数据长这样,如图-6所示。

图-6 dataframe数据

从上面两个图可以看出,DataFrame比RDD多了一个表头信息(Schema),像一张表了,DataFrame还配套了新的操作数据的方法,DataFrame API(如df.select())和SQL(select id, name from xx_table where ...)。

有了DataFrame这个高一层的抽象后,我们处理数据更加简单了,甚至可以用SQL来处理数据了,对开发者来说,易用性有了很大的提升。

不仅如此,通过DataFrame API或SQL处理数据,会自动经过Spark 优化器(Catalyst)的优化,即使你写的程序或SQL不高效,也可以运行的很快。

Dataset:相对于RDD,Dataset提供了强类型支持,也是在RDD的每行数据加了类型约束,下图-7是官网对于dataset的表述。

图-7 dataset

假设RDD中的两行数据如同-5所示,那么Dataset中的数据长这样,如图-8所示。

图-8 dataset数据

或者也可以如图-9所示,其中每行数据是个Object。

图-9 dataset数据

使用Dataset API的程序,会经过Spark SQL的优化器进行优化(优化器叫什么还记得吗?)

目前仅支持Scala、Java API,尚未提供Python的API(所以一定要学习Scala),相比DataFrame,Dataset提供了编译时类型检查,对于分布式程序来讲,提交一次作业太费劲了(要编译、打包、上传、运行),到提交到集群运行时才发现错误,实在是不方便,这也是引入Dataset的一个重要原因。

使用DataFrame的代码中json文件中并没有score字段,但是能编译通过,但是运行时会报异常!如图-10代码所示。

图-10 dataframe编码

而使用Dataset实现,会在IDE中就报错,出错提前到了编译之前,如下图-11所示。

图-11 dataset编码

SparkSession

在SparkSQL中的编程模型,不再是SparkContext,但是创建需要依赖SparkContext。SparkSQL中的编程模型,在spark2.0以前的版本中为SQLContext和HiveContext,HiveContext是SQLContext的一个子类,提供Hive中特有的一些功能,比如row_number开窗函数等等,这是SQLContext所不具备的,在Spark2.0之后将这两个进行了合并——SparkSession。SparkSession的构建需要依赖SparkConf或者SparkContext。使用工厂构建器(Builder方式)模式创建SparkSession。

SparkSQL基本编程

SparkSQL编程初体验

1)SparkSession的构建:

val spark = SparkSession.builder().appName("SparkSQLOps").master("local[*]")//.enableHiveSupport()//支持hive的相关操作.getOrCreate()

2)基本编程:

object SparkSQLOps {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkSQLOps").master("local[*]")//.enableHiveSupport()//支持hive的相关操作.getOrCreate()//加载数据val pdf:DataFrame = spark.read.json("file:///E:/data/spark/sql/people.json")//二维表结构pdf.printSchema()//数据内容 select * from tblpdf.show()//具体的查询 select name, age from tblpdf.select("name", "age").show()//导入sparksession中的隐式转换操作,增强sql的功能import spark.implicits._pdf.select($"name",$"age").show()//列的运算,给每个人的年龄+10 select name, age+10,height-1 from tblpdf.select($"name",$"height" - 1, new Column("age").+(10)).show()//起别名select name, age+10 as age,height-1  as height from tblpdf.select($"name",($"height" -1).as("height")).show()//做聚合统计 统计不同年龄的人数select age, count(1) counts from tbl group by agepdf.select($"age").groupBy($"age").count().show()//条件查询 获取年龄超过18的用户//pdf.select("name", "age", "height").where($"age".>(18)).show()pdf.select("name", "age", "height").where("age > 18").show()//sql风格//pdf.registerTempTable()//在spark2.0之后处于维护状态,使用createOrReplaceTempView/*从使用范围上说,分为global和非globalglobal是当前SparkApplication中可用,非global只在当前SparkSession中可用从创建的角度上说,分为createOrReplace和不ReplacecreateOrReplace会覆盖之前的数据create不Replace,如果视图存在,会报错*/pdf.createOrReplaceTempView("people")spark.sql("""|select| age,| count(1) as countz|from people|group by age""".stripMargin).showspark.stop()}}

SparkSQL编程模型的操作

DataFrame的构建方式

在Spark SQL中SparkSession是创建DataFrames和执行SQL的入口,创建DataFrames有三种方式,一种是可以从一个存在的RDD进行转换,还可以从Hive Table进行查询返回,或者通过Spark的数据源进行创建。

从Spark数据源进行创建:

package chapter1
import org.apache.spark.SparkContext
import org.apache.spark.sql.{DataFrame, SparkSession}
object Create_DataFrame {def main(args: Array[String]): Unit = {//创建程序入口val spark = SparkSession.builder().appName("createDF").master("local[*]").getOrCreate()//调用sparkContextval sc: SparkContext = spark.sparkContext//设置控制台日志输出级别sc.setLogLevel("WARN")//从数据源创建DataFrameval personDF = spark.read.json("resources/people.json")//展示数据personDF.show()}
}

从RDD进行转换:

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}
object Create_DataFrame1 {def main(args: Array[String]): Unit = {//创建程序入口val spark= SparkSession.builder().appName("createDF").master("local[*]").getOrCreate()//调用sparkContextval sc: SparkContext = spark.sparkContext//设置控制台日志输出级别sc.setLogLevel("WARN")//导包import spark.implicits._//加载数据val file: RDD[String] = sc.textFile("E:\\资料\\data\\person.txt")//按照分隔符进行切分val spliFile: RDD[Array[String]] = file.map(line=>line.split(" "))//指定字段类型val personRDD: RDD[(Int, String, Int)] = spliFile.map(line=>(line(0).toInt,line(1),line(2).toInt))//调用toDF方法指定列名val personDF: DataFrame = personRDD.toDF("id","name","age")//展示数据personDF.show()//释放资源spark.stop()sc.stop()}
}

通过反射创建DataFrame:

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
case class person(id:Int,name:String,age:Int)
object createDataFrame2 {def main(args: Array[String]): Unit = {//创建程序入口val spark = SparkSession.builder().appName("createDF").master("local[*]").getOrCreate()//调用sparkContextval sc: SparkContext = spark.sparkContext//设置控制台日志输出级别sc.setLogLevel("WARN")//导包import spark.implicits._//加载数据val file: RDD[String] = sc.textFile("E:\\资料\\data\\person.txt")//按照分隔符进行切分val spliFile: RDD[Array[String]] = file.map(line=>line.split(" "))//指定字段类型val personRDD: RDD[person] = spliFile.map(line=>person(line(0).toInt,line(1),line(2).toInt))//调用toDF方法指定列名val personDF: DataFrame = personRDD.toDF()//展示数据personDF.show()//释放资源spark.stop()sc.stop()}
}

动态编程:

/*使用动态编程的方式构建DataFrameRow-->行,就代表了二维表中的一行记录,jdbc中的resultset,就是java中的一个对象*/val row:RDD[Row] = spark.sparkContext.parallelize(List(Row(1, "李伟", 1, 180.0),Row(2, "汪松伟", 2, 179.0),Row(3, "常洪浩", 1, 183.0),Row(4, "麻宁娜", 0, 168.0)))//表对应的元数据信息val schema = StructType(List(StructField("id", DataTypes.IntegerType, false),StructField("name", DataTypes.StringType, false),StructField("gender", DataTypes.IntegerType, false),StructField("height", DataTypes.DoubleType, false)))val df = spark.createDataFrame(row, schema)df.printSchema()df.show()

说明,这里学习三个新的类:

1)Row:代表的是二维表中的一行记录,或者就是一个Java对象。

2)StructType:是该二维表的元数据信息,是StructField的集合。

3)StructField:是该二维表中某一个字段/列的元数据信息(主要包括,列名,类型,是否可以为null)。

Dataset的构建方式

Dataset是DataFrame的升级版,创建方式和DataFrame类似,但有不同。

//dataset的构建object SparkSQLDatasetOps {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkSQLDataset").master("local[*]").getOrCreate()//dataset的数据集val list = List(new Student(1, "王盛芃", 1, 19),new Student(2, "李金宝", 1, 49),new Student(3, "张海波", 1, 39),new Student(4, "张文悦", 0, 29))import spark.implicits._val ds = spark.createDataset[Student](list)ds.printSchema()ds.show()spark.stop()}}case class Student(id:Int, name:String, gender:Int, age:Int)

在编码中需要注意的是,如果导入spark.implicits隐式转换或者数据类型不是case class,便会出现如图-12所示的bug。

图-12 dataset编码注意的问题

在创建Dataset的时候,需要注意数据的格式,必须使用case class,或者基本数据类型,同时需要通过import spark.implicts._来完成数据类型的编码,而抽取出对应的元数据信息,否则编译无法通过。

RDD和DataFrame以及DataSet的互相转换

RDD→DataFrame:

def beanRDD2DataFrame(spark:SparkSession): Unit = {val stuRDD:RDD[Student] = spark.sparkContext.parallelize(List(new Student(1, "王盛芃", 1, 19),new Student(2, "李金宝", 1, 49),new Student(3, "张海波", 1, 39),new Student(4, "张文悦", 0, 29)))val sdf =spark.createDataFrame(stuRDD, classOf[Student])sdf.printSchema()sdf.show()}

RDD→Dataset:

Def rdd2Dataset(spark:SparkSession): Unit = {val stuRDD = spark.sparkContext.parallelize(List(Student(1, "王盛芃", 1, 19),Student(2, "李金宝", 1, 49),Student(3, "张海波", 1, 39),Student(4, "张文悦", 0, 29)))import spark.implicits._val ds:Dataset[Student] = spark.createDataset[Student](stuRDD)ds.show()}case class Student(id:Int, name:String, gender:Int, age:Int)

RDD转换为DataFrame和Dataset的时候可以有更加简单的方式,如下:

import spark.implicits._rdd.toDF()rdd.toDS()DataFrame→RDD:val rdd:RDD[Row] = df.rddrdd.foreach(row => {val id = row.getInt(0)val name = row.getString(1)val gender = row.getInt(2)val height = row.getAs[Double]("height")println(s"id=${id},name=$name,gender=$gender,height=$height")})

Dataset→RDD:

val stuDS: Dataset[Student] = list2Dataset(spark)val stuRDD:RDD[Student] = stuDS.rddstuRDD.foreach(println)Dataset→DataFrame:val stuDS: Dataset[Student] = list2Dataset(spark)      //dataset --->dataframeval df:DataFrame = stuDS.toDF()df.show()

DataFrame→Dataset:无法直接将DataFrame转化为Dataset,需要通过as方法添加泛型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/686002.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

百面算法工程师 | 模型评价指标及优化策略

本文给大家带来的百面算法工程师是深度学习模型评价指标的面试总结,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,我们还将介绍一些常见的评价方案,并提供参考的回答及其理论基础&…

程序的环境和预处理#define #ifdefine

文章目录 预编译 预处理做的事情把#include<>里面的内容执行了注释删除&#xff0c;使用空格替换注释define 把符号统统替换为值 编译阶段做的事情链接做的事情运行环境预处理(预处理)详解预定义符号__FILE____LINE____DATE__ __TIME__写日志文件__FUNCTION__ #define预处…

Java解决垂直鉴权问题(对垂直权限进行校验)

Java解决垂直鉴权问题&#xff08;对垂直权限进行校验&#xff09; 文章目录 Java解决垂直鉴权问题&#xff08;对垂直权限进行校验&#xff09;前言一、垂直鉴权是什么&#xff1f;二、实现过程1.新建接口权限菜单映射表2.项目初始化时加载接口菜单映射关系3.自定义过滤器拦截…

Amazon SQS使用

Amazon SQS 服务(Amazon Simple Queue Service)。Amazon SQS 允许生产器向队列发送消息。然后&#xff0c;消息会存储在 SQS 队列中。当使用者准备好处理新消息时&#xff0c;使用者可以从队列中轮询这些消息。应用程序、微服务和多个 AWS 服务可以担当生产器或使用者的角色。 …

重生我是嵌入式大能之串口调试UART

什么是串口 串口是一种在数据通讯中广泛使用的通讯接口&#xff0c;通常我们叫做UART (通用异步收发传输器Universal Asynchronous Receiver/Transmitter)&#xff0c;其具有数据传输速度稳定、可靠性高、适用范围广等优点。在嵌入式系统中&#xff0c;串口常用于与外部设备进…

C++内存分区

代码区&#xff1a;存放函数体的二进制代码&#xff0c;由操作系统进行管理的 全局区&#xff1a;存放全局变量和静态变量以及常量 栈区&#xff1a;由编译器自动分配释放&#xff0c;存放函数的参数值&#xff0c;局部变量等 堆区&#xff1a;由程序员分配和释放&#xff0c;若…

【数据结构与算法】常见的排序算法

文章目录 排序的概念冒泡排序&#xff08;Bubble Sort&#xff09;插入排序&#xff08;Insert Sort&#xff09;选择排序&#xff08;Select Sort&#xff09;希尔排序&#xff08;Shell Sort&#xff09;写法一写法二 快速排序&#xff08;Quick Sort&#xff09;hoare版本&a…

鸿蒙内核源码分析(文件句柄篇) | 你为什么叫句柄

句柄 | handle int open(const char* pathname,int flags); ssize_t read(int fd, void *buf, size_t count); ssize_t write(int fd, const void *buf, size_t count); int close(int fd);只要写过应用程序代码操作过文件不会陌生这几个函数,文件操作的几个关键步骤嘛,跟把大…

【全开源】JAVA上门家政服务系统源码微信小程序+微信公众号+APP+H5

功能介绍 用户端&#xff1a;精准分类、支持家政、维修、万能服务、一口价、报价、线上、各类家政服务、优惠专区、师傅入驻、商家入驻、我的需求、补费明细、我的投诉 师傅端&#xff1a;接单池、消息通知、接单管理、今日订单、师傅入驻、我的钱包、实名认证 商家端&#…

Python中的多进程、多线程、协程

Python中的多线程、多进程、协程 一、概述 1. 多线程Thread &#xff08;threading&#xff09;&#xff1a; 优点&#xff1a;同一个进程中可以启动多个线程&#xff0c;充分利用IO时&#xff0c;cpu进行等待的时间缺点&#xff1a;相对于进程&#xff0c;多线程只能并发执…

HTML5+CSS3+JS小实例:旋转渐变光标

实例:旋转渐变光标 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale…

远程桌面连接不上怎么连服务器,原因是什么?如何解决?

远程桌面连接不上怎么连服务器&#xff0c;原因是什么&#xff1f;如何解决&#xff1f; 面对远程桌面连接不上的困境&#xff0c;我们有办法&#xff01; 当你尝试通过远程桌面连接服务器&#xff0c;但遭遇连接失败的挫折时&#xff0c;不要慌张。这种情况可能由多种原因引起…