【深度学习】Diffusion扩散模型原理解析1

1、前言

diffusion,这几年一直很火的模型,比如这段时间在网上的文生图大模型——Stable diffusion。就是以diffusion作为基底模型,但由于该模型与VAE那边,都涉及了较多了概率论知识,实在让人望而却步。所以,本文将对diffusion进行数学原理推导,如果你没有上过概率论这门课,建议先去学。

论文:

①Deep Unsupervised Learning using Nonequilibrium Thermodynamics (arxiv.org)

②Denoising Diffusion Probabilistic Models (arxiv.org)

③Understanding Diffusion Models: A Unified Perspective (arxiv.org)

参考代码:DL-Demos/dldemos at master · SingleZombie/DL-Demos · GitHub

视频:【Diffusion扩散模型原理解析-哔哩哔哩】

案例演示:

在这里插入图片描述
受CSDN篇幅限制,分成两篇,下一篇:【深度学习】Diffusion扩散模型原理解析2

2、Diffusion流程

2.1、运行流程

Diffusion分为两个步骤——扩散、逆扩散

在这里插入图片描述

扩散过程是对图像加入高斯噪声的过程(图中上半部分):

给定一张图像,然后构造T个时刻,每一个时刻对应一张图像,如图中t=0,对应我们给定的初始图像

然后,对这张图像加一个高斯噪声,得到t=1时刻的图像;再对t=1时刻的图像加入噪声,得到t=2时刻的噪声。然后重复此法,到T时刻时,就得到了一张全是噪点的图像(t=T)

逆扩散过程就是对图像减去噪声的过程,也就是还原图像的过程(图中下半部分):

给定一张全是噪点的图像,然后不断去噪,去到t=2时,得到图中的图像,再去噪,得到t=1时刻的图像,再再去噪,就还原回了坤坤的图像。

2.2、原因

为什么要费尽心思把它加入这么多噪声,再复原回来?

对于T时刻的图像,它是服从正态分布的,并且,是近似服从标准正态分布。那么,如果要生成图像,是不是可以直接从标准正态分布中采样出数据,然后一点点去噪,就能还原回原来的图像了呢?这就是diffusion的思想

2.3、前向加噪

记时刻1为原始图像,表示为 x 1 x_1 x1,则时刻2表达为 x 2 x_2 x2

每一个时刻都要加入一个噪声,那么该如何加噪呢?假设在 t − 1 t-1 t1时刻,我们该如何得到 i i i时刻的图像?其公式如下
x t = α t x t − 1 + 1 − α t ϵ t (1) x_t=\sqrt\alpha_t x_{t-1}+\sqrt{1-\alpha_t}\epsilon_t\tag{1} xt=α txt1+1αt ϵt(1)
x t − 1 、 x t x_{t-1}、x_t xt1xt分别表示 t − 1 t-1 t1时刻和 t t t时刻的图像。 α t \alpha_t αt一般是一个大于0小于1的超参数,随着时刻的增加而减小, ϵ t ∼ N ( 0 , I ) \epsilon_t\sim N(0,I) ϵtN(0,I)的标准正态分布(Ps:为什么是加权平均,并且要开根号?感兴趣请看参考①)

从这个式子不难看出,这其实不是简单的从 x t − 1 x_{t-1} xt1中加噪,而是加权平均。

t − 1 t-1 t1 t t t可以用式(1)表示,那从 t − 2 t-2 t2 t t t呢?难道我们每次都要一次一次的加入噪声吗?有没有办法更好的表示?

我们先看一个正态分布的基本定理:

定理①:

假设: x 1 ∼ N ( 0 , σ 1 I ) , x 2 ∼ N ( 0 , σ 2 I ) x_1\sim N(0,\sigma_1I),x_2\sim N(0,\sigma_2I) x1N(0,σ1I),x2N(0,σ2I)

则: ( x 1 + x 2 ) ∼ N ( 0 , ( σ 1 + σ 2 ) I ) (x_1+x_2)\sim N(0,(\sigma_1+\sigma_2)I) (x1+x2)N(0,(σ1+σ2)I)

定理②:

假设: x 1 ∼ N ( 0 , I ) x_1 \sim N(0,I) x1N(0,I)

则: a x 1 ∼ N ( 0 , a 2 I ) ax_1 \sim N(0,a^2I) ax1N(0,a2I)

Ps:这几个定理证明很简单,此处不做证明,不懂的可以自行百度,或者问我。

现在,我们把 t − 2 t-2 t2 t t t由式(1)推导出来
x t = α t x t − 1 + 1 − α t ϵ t = α t ( α t − 1 x t − 2 + 1 − α t − 1 ϵ t − 1 ) + 1 − α t ϵ t = α t α t − 1 x t − 2 + α t ( 1 − α t − 1 ) ϵ t − 1 + 1 − α t ϵ t (2) \begin{aligned}x_t = &\sqrt\alpha_tx_{t-1}+\sqrt{1-\alpha_t}\epsilon_t\\=&\sqrt\alpha_t(\sqrt{\alpha_{t-1}}x_{t-2}+\sqrt{1-\alpha_{t-1}}\epsilon_{t-1})+\sqrt{1-\alpha_t}\epsilon_t\\=&\sqrt{\alpha_t\alpha_{t-1}}x_{t-2}+\sqrt{\alpha_{t}(1-\alpha_{t-1})}\epsilon_{t-1}+\sqrt{1-\alpha_t}\epsilon_t\end{aligned}\tag{2} xt===α txt1+1αt ϵtα t(αt1 xt2+1αt1 ϵt1)+1αt ϵtαtαt1 xt2+αt(1αt1) ϵt1+1αt ϵt(2)
其中 ϵ ∼ N ( 0 , I ) \epsilon \sim N(0,I) ϵN(0,I)

由定理②可得: α t ( 1 − α t − 1 ) ϵ t − 1 ∼ N ( 0 , α t ( 1 − α t − 1 ) I ) \sqrt{\alpha_{t}(1-\alpha_{t-1})}\epsilon_{t-1} \sim N(0,\alpha_{t}(1-\alpha_{t-1})I) αt(1αt1) ϵt1N(0,αt(1αt1)I)

由定理②可得: ( 1 − α t ) ϵ t ∼ N ( 0 , ( 1 − α t ) I ) (1-\sqrt{\alpha_t})\epsilon_{t} \sim N(0,(1-\alpha_t)I) (1αt )ϵtN(0,(1αt)I)

所以由定理①可得:
α t ( 1 − α t − 1 ) ϵ t − 1 + ( 1 − α t ) ϵ t ∼ N ( 0 , ( α t ( 1 − α t − 1 ) + 1 − α t ) I ) → N ( 0 , ( 1 − α t α t − 1 ) I ) (3) \sqrt{\alpha_{t}(1-\alpha_{t-1})}\epsilon_{t-1}+(1-\sqrt{\alpha_t})\epsilon_t \sim N(0,(\alpha_{t}(1-\alpha_{t-1})+1-\alpha_t)I)\rightarrow N(0,(1-\alpha_t\alpha_{t-1})I)\tag{3} αt(1αt1) ϵt1+(1αt )ϵtN(0,(αt(1αt1)+1αt)I)N(0,(1αtαt1)I)(3)

而由定理②可知: N ( 0 , ( 1 − α t α t − 1 ) I ) → 1 − α t α t − 1 ϵ ˉ N(0,(1-\alpha_t\alpha_{t-1})I)\rightarrow\sqrt{1-\alpha_t\alpha_{t-1}}\bar\epsilon N(0,(1αtαt1)I)1αtαt1 ϵˉ
N ( 0 , ( 1 − α t α t − 1 ) I ) → 1 − α t α t − 1 ϵ ˉ (4) N(0,(1-\alpha_t\alpha_{t-1})I)\rightarrow\sqrt{1-\alpha_t\alpha_{t-1}}\bar\epsilon\tag{4} N(0,(1αtαt1)I)1αtαt1 ϵˉ(4)
其中 ϵ ˉ ∼ N ( 0 , I ) \bar\epsilon\sim N(0,I) ϵˉN(0,I)

那么
α t α t − 1 x t − 2 + α t ( 1 − α t − 1 ) ϵ t − 1 + 1 − α t ϵ t ∼ N ( α t α t − 1 x t − 2 , ( 1 − α t α t − 1 ) I ) \sqrt{\alpha_t\alpha_{t-1}}x_{t-2}+\sqrt{\alpha_{t}(1-\alpha_{t-1})}\epsilon_{t-1}+\sqrt{1-\alpha_t}\epsilon_t\sim N(\sqrt{\alpha_t\alpha_{t-1}}x_{t-2},(1-\alpha_t\alpha_{t-1})I) αtαt1 xt2+αt(1αt1) ϵt1+1αt ϵtN(αtαt1 xt2,(1αtαt1)I)
所以不难看出式(3)直接等于式(4)

所以式(2)的后两项可直接用式(4)代换,得
x t = α t α t − 1 x t − 2 + 1 − α t α t − 1 ϵ ˉ x_t=\sqrt{\alpha_t\alpha_{t-1}}x_{t-2}+\sqrt{1-\alpha_t\alpha_{t-1}}\bar\epsilon xt=αtαt1 xt2+1αtαt1 ϵˉ
不难看出,现在就有了 x t − 1 x_{t-1} xt1图像和 x t x_t xt的图像关系,就不需要再一步步加入噪声了,可以一步到位

所以,当求某个随机变量的概率时,可以写成

q ( x t ∣ x t − 1 ) ∼ N ( x t ∣ α t x t − 1 , ( 1 − α t ) I ) q(x_t|x_{t-1})\sim N(x_t|\sqrt{\alpha_t}x_{t-1},(1-\alpha_{t})I) q(xtxt1)N(xtαt xt1,(1αt)I)
为了更好的表示从0到 t t t时刻的概率分布,我们设 α ˉ t = ∏ i = 0 t α i \bar\alpha_t=\prod\limits_{i=0}^t\alpha_i αˉt=i=0tαi

加噪的过程则可表示为
x t = α ˉ t x 0 + 1 − α ˉ t ϵ t (5) x_t=\sqrt{\bar\alpha_t}x_{0}+\sqrt{1-\bar\alpha_t}\epsilon_t\tag{5} xt=αˉt x0+1αˉt ϵt(5)
其概率分布表示为
q ( x t ∣ x 0 ) ∼ N ( x t ∣ α ˉ t x 0 , ( 1 − α ˉ t ) I ) (6) q(x_t|x_0)\sim N(x_t|\sqrt{\bar\alpha_t}x_{0},(1-\bar\alpha_t)I)\tag{6} q(xtx0)N(xtαˉt x0,(1αˉt)I)(6)
除此之外,为了后面的表达方便,作者还使用 β = 1 − α \beta = 1-\alpha β=1α β ˉ = 1 − α ˉ \bar\beta=1-\bar\alpha βˉ=1αˉ

因此,可得
x t = 1 − β ˉ t x t − 1 + β ˉ t ϵ t q ( x t ∣ x t − 1 ) ∼ N ( x t ∣ 1 − β t x t − 1 , β t I ) q ( x t ∣ x 0 ) ∼ N ( x t ∣ 1 − β ˉ t x 0 , β ˉ t I ) x_t=\sqrt{1-\bar\beta_t}x_{t-1}+\sqrt{\bar\beta_t}\epsilon_t\\q(x_t|x_{t-1})\sim N(x_t|\sqrt{1-\beta_t}x_{t-1},\beta_tI)\\ q(x_t|x_0)\sim N(x_t|\sqrt{1-\bar\beta_t}x_{0},\bar\beta_tI) xt=1βˉt xt1+βˉt ϵtq(xtxt1)N(xt1βt xt1,βtI)q(xtx0)N(xt1βˉt x0,βˉtI)

2.4、逆扩散过程

得到了 q ( x t ∣ x t − 1 ) q(x_t|x_{t-1}) q(xtxt1)的加噪过程及其概率分布。前面提到,我们的最终目标是从T时刻采样出数据,然后慢慢去噪,就得到生成的图像。那么,该如何去噪呢?换句话说,我们该如何求出 q ( x t − 1 ∣ x t ) q(x_{t-1}|x_t) q(xt1xt)呢?

论文提出,当扩散过程的 β \beta β足够小,那么其逆操作,也同样符合正态分布,也就是 q ( x t − 1 ∣ x t ) ∼ N q(x_{t-1}|x_t)\sim N q(xt1xt)N

2.5、一阶马尔可夫假设

在扩散过程中,模型总是一个时刻一个时刻地加噪,也就是说, t t t时刻的图像,是来自 t − 1 t-1 t1时刻的

在这里插入图片描述

所以,在这种过程中,引入一个假设——马尔可夫假设

一阶马尔可夫假设:给定 t − 1 t-1 t1时刻的状态, t t t时刻仅与 t − 1 t-1 t1时刻有关,与过去的状态无关

概率表达为
q ( x t ∣ x t − 1 , x t − 2 , ⋯ , x 0 ) = q ( x t ∣ x t − 1 ) q(x_t|x_{t-1},x_{t-2},\cdots,x_0)=q(x_t|x_{t-1}) q(xtxt1,xt2,,x0)=q(xtxt1)
逆扩散也是一样的道理(按照图中箭头即可看到)
P ( x t − 1 ∣ x t , x t + 1 , ⋯ , x T ) = P ( x t − 1 ∣ x t ) P(x_{t-1}|x_t,x_{t+1},\cdots,x_T)=P(x_{t-1}|x_t) P(xt1xt,xt+1,,xT)=P(xt1xt)
由马尔可夫假设,我们不难得出
q ( x 1 : T ∣ x 0 ) = q ( x 2 : T ∣ x 0 , x 1 ) q ( x 1 ∣ x 0 ) = q ( x 3 : T ∣ x 0 , x 1 , x 2 ) q ( x 2 ∣ x 0 , x 1 ) q ( x 1 ∣ x 0 ) = q ( x 3 : T ∣ x 0 , x 1 , x 2 ) q ( x 2 ∣ x 1 ) q ( x 1 ∣ x 0 ) \begin{aligned}q(x_{1:T}|x_0)=&q(x_{2:T}|x_0,x_1)q(x_{1}|x_0)\\=&q(x_{3:T}|x_0,x_1,x_2)q(x_{2}|x_0,x_1)q(x_{1}|x_0)\\=&q(x_{3:T}|x_0,x_1,x_2)q(x_{2}|x_1)q(x_{1}|x_0)\end{aligned}\nonumber q(x1:Tx0)===q(x2:Tx0,x1)q(x1x0)q(x3:Tx0,x1,x2)q(x2x0,x1)q(x1x0)q(x3:Tx0,x1,x2)q(x2x1)q(x1x0)
然后不断拆分,就得到了
q ( x 1 : T ∣ x 0 ) = ∏ t = 1 T q ( x t ∣ x t − 1 ) q(x_{1:T}|x_0)=\prod\limits_{t=1}^Tq(x_t|x_{t-1}) q(x1:Tx0)=t=1Tq(xtxt1)
逆扩散过程也同理, P ( x 0 : T − 1 ∣ x T ) = ∏ t = 1 T P ( x t − 1 ∣ x t ) P(x_{0:T-1}|x_T)=\prod\limits_{t=1}^TP(x_{t-1}|x_{t}) P(x0:T1xT)=t=1TP(xt1xt)

3、Diffusion训练

3.1、目标函数

按照传统做法,直接对训练图片求极大似然,定义所有图像为 X X X
X = ( x 1 , x 2 , x 3 , . . , x n ) X=\begin{pmatrix}x^{1},x^{2},x^{3},..,x^n\end{pmatrix} X=(x1,x2,x3,..,xn)
x i x^{i} xi是第 i i i个样本,样本之间独立同分布

对X求对数似然
log ⁡ P ( X ) = log ⁡ P ( x 1 , x 2 , . . . , x n ) = log ⁡ ∏ i = 1 n P ( x i ) = ∑ i = 1 n log ⁡ P ( x i ) \begin{aligned}\log P(X)=&\log P(x^1,x^2,...,x^n)\\=&\log\prod\limits_{i=1}^nP(x^{i})\\=&\sum\limits_{i=1}^n\log P(x^i)\end{aligned}\nonumber logP(X)===logP(x1,x2,...,xn)logi=1nP(xi)i=1nlogP(xi)
我们先从某一个样本出发,为了简便,直接记作 P ( x ) P(x) P(x)

而x是前向扩散的初始图像,为了区分不同时刻的图像,我们把 P ( x ) P(x) P(x)表示为 P ( x 0 ) P(x_0) P(x0),代表是初始图像
log ⁡ P ( x 0 ) = log ⁡ P ( x 0 : T ) P ( x 1 : T ∣ x 0 ) \log P(x_0)=\log\frac{P(x_{0:T})}{P(x_{1:T}|x_0)} logP(x0)=logP(x1:Tx0)P(x0:T)
P ( x 0 : T ) = P ( x 0 , x 1 , ⋯ , x T ) P(x_{0:T})=P(x_0,x_1,\cdots,x_T) P(x0:T)=P(x0,x1,,xT)

引入一个 q ( x 1 : T ∣ x 0 ) q(x_{1:T}|x_0) q(x1:Tx0),在等式左右,关于 q ( x 1 : T ∣ x 0 ) q(x_{1:T}|x_0) q(x1:Tx0)求积分

等式左边:
∫ log ⁡ P ( x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T = log ⁡ P ( x 0 ) ∫ q ( x 1 : T ∣ x 0 ) d x 1 : T = log ⁡ P ( x 0 ) \int\log P(x_0)q(x_{1:T}|x_0)dx_{1:T}=\log P(x_0)\int q(x_{1:T}|x_0)dx_{1:T}=\log P(x_0) logP(x0)q(x1:Tx0)dx1:T=logP(x0)q(x1:Tx0)dx1:T=logP(x0)
等式右边:
∫ log ⁡ P ( x 0 : T ) P ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T \int \log\frac{P(x_{0:T})}{P(x_{1:T}|x_0)}q(x_{1:T}|x_0)dx_{1:T} logP(x1:Tx0)P(x0:T)q(x1:Tx0)dx1:T
所以:
log ⁡ P ( x 0 ) = ∫ log ⁡ P ( x 0 : T ) P ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T = ∫ log ⁡ P ( x 0 : T ) q ( x 1 : T ∣ x 0 ) P ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T = ∫ ( log ⁡ P ( x 0 : T ) q ( x 1 : T ∣ x 0 ) − log ⁡ P ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) ) q ( x 1 : T ∣ x 0 ) d x 1 : T = ∫ log ⁡ P ( x 0 : T ) q ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T − ∫ log ⁡ P ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T = ∫ log ⁡ P ( x 0 : T ) q ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T ⏟ ① + K L ( q ( x 1 : T ∣ x 0 ) ∣ ∣ P ( x 1 : T ∣ x 0 ) ) ⏟ ② \begin{aligned}\log P(x_0)=&\int \log\frac{P(x_{0:T})}{P(x_{1:T}|x_0)}q(x_{1:T}|x_0)dx_{1:T}\\=&\int\log \frac{\frac{P(x_{0:T})}{q(x_{1:T}|x_0)}}{\frac{P(x_{1:T}|x_0)}{q(x_{1:T}|x_0)}}q(x_{1:T}|x_0)dx_{1:T}\\=&\int\left(\log \frac{P(x_{0:T})}{q(x_{1:T}|x_0)}-\log\frac{P(x_{1:T}|x_0)}{q(x_{1:T}|x_0)} \right) q(x_{1:T}|x_0)dx_{1:T}\\=&\int\log \frac{P(x_{0:T})}{q(x_{1:T}|x_0)}q(x_{1:T}|x_0)dx_{1:T}-\int\log\frac{P(x_{1:T}|x_0)}{q(x_{1:T}|x_0)}q(x_{1:T}|x_0)dx_{1:T}\\=&\underbrace{\int\log \frac{P(x_{0:T})}{q(x_{1:T}|x_0)}q(x_{1:T}|x_0)dx_{1:T}}_{①}+\underbrace{KL(q(x_{1:T}|x_0)||P(x_{1:T}|x_0))}_{②}\end{aligned}\nonumber logP(x0)=====logP(x1:Tx0)P(x0:T)q(x1:Tx0)dx1:Tlogq(x1:Tx0)P(x1:Tx0)q(x1:Tx0)P(x0:T)q(x1:Tx0)dx1:T(logq(x1:Tx0)P(x0:T)logq(x1:Tx0)P(x1:Tx0))q(x1:Tx0)dx1:Tlogq(x1:Tx0)P(x0:T)q(x1:Tx0)dx1:Tlogq(x1:Tx0)P(x1:Tx0)q(x1:Tx0)dx1:T logq(x1:Tx0)P(x0:T)q(x1:Tx0)dx1:T+ KL(q(x1:Tx0)∣∣P(x1:Tx0))
②是一个KL散度,但是 P ( x 1 : T ∣ x 0 ) P(x_{1:T}|x_0) P(x1:Tx0)我们是没有办法求出来的。因此,我们可以选择去求出 q ( x 1 : T ∣ x 0 ) q(x_{1:T}|x_0) q(x1:Tx0),由KL散度 ≥ 0 \ge0 0可知,当两个概率分布相等,KL等于0,只需要让②最小,所以我们有一个优化目标,也就是最小化
min ⁡ K L ( q ( x 1 : T ∣ x 0 ) ∣ ∣ P ( x 1 : T ∣ x 0 ) ) \min KL(q(x_{1:T}|x_0)||P(x_{1:T}|x_0)) minKL(q(x1:Tx0)∣∣P(x1:Tx0))
而我们知道,当给定训练数据 x 0 x_0 x0跟对应的似然参数时, log ⁡ P ( x 0 ) \log P(x_0) logP(x0)的值是唯一确定的。对于一个确定的值,我们最小化②,就相当于最大化①。因为 log ⁡ P ( x 0 ) \log P(x_0) logP(x0)是确定的,所以②变小,就意味着①增大,
max ⁡ ∫ z log ⁡ P ( x 0 : T ) q ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T ↔ min ⁡ K L ( q ( x 1 : T ∣ x 0 ) ∣ ∣ P ( x 1 : T ∣ x 0 ) ) \max \int_{z}\log\frac{P(x_{0:T})}{q(x_{1:T}|x_0)}q(x_{1:T}|x_0)dx_{1:T} \leftrightarrow \min KL(q(x_{1:T}|x_0)||P(x_{1:T}|x_0)) maxzlogq(x1:Tx0)P(x0:T)q(x1:Tx0)dx1:TminKL(q(x1:Tx0)∣∣P(x1:Tx0))
由于式子②始终大于等于0,所以对于①,由于 log ⁡ P ( x 0 ) ≥ ① \log P(x_0)\ge① logP(x0),所以①又被称为变分下界

所以,我们优化的,其实根本就不是极大似然,而是似然的变分下界,这也是一种无奈之举

优化其变分下界

log ⁡ P ( x 0 ) ≥ ∫ log ⁡ P ( x 0 : T ) q ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) d x 1 : T = E q [ log ⁡ P ( x 0 : T ) q ( x 1 : T ∣ x 0 ) ] = E q [ log ⁡ P ( x T ) P ( x 0 : T − 1 ∣ x T ) q ( x 1 : T ∣ x 0 ) ] = E q [ log ⁡ P ( x T ) + log ⁡ P ( x 0 : T − 1 ∣ x T ) q ( x 1 : T ∣ x 0 ) ] = E q [ log ⁡ P ( x T ) + log ⁡ ∏ t = 1 T P ( x t − 1 ∣ x t ) ∏ t = 1 T q ( x t ∣ x t − 1 ) ] = E q [ log ⁡ P ( x T ) + ∑ t = 1 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 ) ] = E q [ log ⁡ P ( x T ) + ∑ t = 2 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 ) + log ⁡ P ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ] (7) \begin{aligned}\log P(x_0)\ge& \int\log \frac{P(x_{0:T})}{q(x_{1:T}|x_0)}q(x_{1:T}|x_0)dx_{1:T}\\=&\mathbb{E}_q\left[\log \frac{P(x_{0:T})}{q(x_{1:T}|x_0)}\right] \\=&\mathbb{E}_q\left[\log \frac{P(x_T)P(x_{0:T-1}|x_T)}{q(x_{1:T}|x_0)}\right]\\=&\mathbb{E}_q\left[\log P(x_T)+\log\frac{P(x_{0:T-1}|x_T)}{q(x_{1:T}|x_0)}\right]\\=&\mathbb{E}_q\left[\log P(x_T)+\log\frac{\prod\limits_{t=1}^{T}P(x_{t-1}|x_t)}{\prod\limits_{t=1}^Tq(x_t|x_{t-1})}\right]\\=&\mathbb{E}_q\left[\log P(x_T)+\sum\limits_{t=1}^T\log\frac{P(x_{t-1}|x_t)}{q(x_t|x_{t-1})}\right]\\=&\mathbb{E}_q\left[\log P(x_T)+\sum\limits_{t=2}^T\log\frac{P(x_{t-1}|x_t)}{\color{red}{q(x_t|x_{t-1})}}+\log\frac{P(x_{0}|x_1)}{q(x_1|x_0)}\right]\nonumber\end{aligned}\tag{7} logP(x0)======logq(x1:Tx0)P(x0:T)q(x1:Tx0)dx1:TEq[logq(x1:Tx0)P(x0:T)]Eq[logq(x1:Tx0)P(xT)P(x0:T1xT)]Eq[logP(xT)+logq(x1:Tx0)P(x0:T1xT)]Eq logP(xT)+logt=1Tq(xtxt1)t=1TP(xt1xt) Eq[logP(xT)+t=1Tlogq(xtxt1)P(xt1xt)]Eq[logP(xT)+t=2Tlogq(xtxt1)P(xt1xt)+logq(x1x0)P(x0x1)](7)

对红色部分,由马尔可夫假设和条件概率公式可得
1 q ( x t ∣ x t − 1 ) = 1 q ( x t ∣ x t − 1 , x 0 ) = q ( x t − 1 ∣ x 0 ) q ( x t , x t − 1 ∣ x 0 ) = q ( x t − 1 ∣ x 0 ) q ( x t − 1 ∣ , x t , x 0 ) q ( x t ∣ x 0 ) \frac{1}{q(x_t|x_{t-1})}=\frac{1}{q(x_t|x_{t-1},x_0)}=\frac{q(x_{t-1}|x_0)}{q(x_{t},x_{t-1}|x_0)}=\frac{q(x_{t-1}|x_0)}{q(x_{t-1}|,x_{t},x_0)q(x_{t}|x_0)} q(xtxt1)1=q(xtxt1,x0)1=q(xt,xt1x0)q(xt1x0)=q(xt1,xt,x0)q(xtx0)q(xt1x0)
将其代入式(7),可得
log ⁡ P ( x 0 ) ≥ E q [ log ⁡ P ( x T ) + ∑ t = 2 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) + log ⁡ P ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ] = E q [ log ⁡ P ( x T ) + ∑ t = 2 T [ log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) + log ⁡ q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) ] + log ⁡ P ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ] = E q [ log ⁡ P ( x T ) + ∑ t = 2 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) + ∑ t = 2 T log ⁡ q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) + log ⁡ P ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ] = E q [ log ⁡ P ( x T ) + ∑ t = 2 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) + log ⁡ ∏ t = 2 T q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) + log ⁡ P ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ] (8) \begin{aligned}\log P(x_0)\ge&\mathbb{E}_q\left[\log P(x_T)+\sum\limits_{t=2}^T\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}\frac{q(x_{t-1}|x_0)}{q(x_{t}|x_0)}+\log\frac{P(x_0|x_1)}{q(x_1|x_0)}\right]\\=&\mathbb{E}_q\left[\log P(x_T)+\sum\limits_{t=2}^T\left[\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}+\log \frac{q(x_{t-1}|x_0)}{q(x_{t}|x_0)}\right]+\log\frac{P(x_0|x_1)}{q(x_1|x_0)}\right]\\=&\mathbb{E}_q\left[\log P(x_T)+\sum\limits_{t=2}^T\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}+\sum\limits_{t=2}^T\log \frac{q(x_{t-1}|x_0)}{q(x_{t}|x_0)}+\log\frac{P(x_0|x_1)}{q(x_1|x_0)}\right]\\=&\mathbb{E}_q\left[\log P(x_T)+\sum\limits_{t=2}^T\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}+{\color{red}\log\prod\limits_{t=2}^T \frac{q(x_{t-1}|x_0)}{q(x_{t}|x_0)}}+\log\frac{P(x_0|x_1)}{q(x_1|x_0)}\right]\end{aligned}\tag{8} logP(x0)===Eq[logP(xT)+t=2Tlogq(xt1xt,x0)P(xt1xt)q(xtx0)q(xt1x0)+logq(x1x0)P(x0x1)]Eq[logP(xT)+t=2T[logq(xt1xt,x0)P(xt1xt)+logq(xtx0)q(xt1x0)]+logq(x1x0)P(x0x1)]Eq[logP(xT)+t=2Tlogq(xt1xt,x0)P(xt1xt)+t=2Tlogq(xtx0)q(xt1x0)+logq(x1x0)P(x0x1)]Eq[logP(xT)+t=2Tlogq(xt1xt,x0)P(xt1xt)+logt=2Tq(xtx0)q(xt1x0)+logq(x1x0)P(x0x1)](8)
标红那一部分,把连乘展开
log ⁡ ∏ t = 2 T q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) = log ⁡ q ( x 1 ∣ x 0 ) q ( x 2 ∣ x 0 ) ∗ q ( x 2 ∣ x 0 ) q ( x 3 ∣ x 0 ) ⋯ ∗ q ( x T − 2 ∣ x 0 ) q ( x T − 1 ∣ x 0 ) ∗ q ( x T − 1 ∣ x 0 ) q ( x T ∣ x 0 ) = log ⁡ q ( x 1 ∣ x 0 ) q ( x T ∣ x 0 ) \log\prod\limits_{t=2}^T \frac{q(x_{t-1}|x_0)}{q(x_{t}|x_0)}=\log\frac{q(x_1|x_0)}{q(x_2|x_0)}*\frac{q(x_2|x_0)}{q(x_3|x_0)}\cdots *\frac{q(x_{T-2}|x_0)}{q(x_{T-1}|x_0)}*\frac{q(x_{T-1}|x_0)}{q(x_T|x_0)}=\log \frac{q(x_1|x_0)}{q(x_T|x_0)} logt=2Tq(xtx0)q(xt1x0)=logq(x2x0)q(x1x0)q(x3x0)q(x2x0)q(xT1x0)q(xT2x0)q(xTx0)q(xT1x0)=logq(xTx0)q(x1x0)
将其代入式(8),可得
log ⁡ P ( x 0 ) ≥ E q [ log ⁡ P ( x T ) + ∑ t = 2 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) + log ⁡ q ( x 1 ∣ x 0 ) q ( x T ∣ x 0 ) + log ⁡ P ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ] = E q [ log ⁡ P ( x T ) + ∑ t = 2 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) + log ⁡ q ( x 1 ∣ x 0 ) − log ⁡ q ( x T ∣ x 0 ) + log ⁡ P ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ] \begin{aligned}\log P(x_0)\ge&\mathbb{E}_q\left[\log P(x_T)+\sum\limits_{t=2}^T\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}+\log \frac{q(x_{1}|x_0)}{q(x_{T}|x_0)}+\log\frac{P(x_0|x_1)}{q(x_1|x_0)}\right]\\=&\mathbb{E}_q\left[{\color{blue}\log P(x_T)}+\sum\limits_{t=2}^T\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}+{\color{red}\log q(x_1|x_0)}-{\color{blue}\log q(x_T|x_0)}+{\color{red}\log\frac{P(x_0|x_1)}{q(x_1|x_0)}}\right]\end{aligned}\nonumber logP(x0)=Eq[logP(xT)+t=2Tlogq(xt1xt,x0)P(xt1xt)+logq(xTx0)q(x1x0)+logq(x1x0)P(x0x1)]Eq[logP(xT)+t=2Tlogq(xt1xt,x0)P(xt1xt)+logq(x1x0)logq(xTx0)+logq(x1x0)P(x0x1)]
依据 log ⁡ \log log运算法则,将蓝色跟蓝色的式子结合起来(红色同理)
log ⁡ P ( x 0 ) ≥ E q [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) + ∑ t = 2 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) + log ⁡ P ( x 0 ∣ x 1 ) ] = E q [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) ] ⏟ ① + E q [ ∑ t = 2 T log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ] ⏟ ② + E q [ log ⁡ P ( x 0 ∣ x 1 ) ] ⏟ ③ (9) \begin{aligned}\log P(x_0)\ge&\mathbb{E}_q\left[\log \frac{{P(x_T)}}{ q(x_T|x_0)}+\sum\limits_{t=2}^T\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}+\log P(x_0|x_1)\right]\\=&\underbrace{\mathbb{E}_q\left[\log \frac{{P(x_T)}}{ q(x_T|x_0)}\right]}_{①}+\underbrace{\mathbb{E}_q\left[\sum\limits_{t=2}^T\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}\right]}_{②}+\underbrace{\mathbb{E}_q\left[\log P(x_0|x_1)\right]}_{③}\end{aligned}\tag{9} logP(x0)=Eq[logq(xTx0)P(xT)+t=2Tlogq(xt1xt,x0)P(xt1xt)+logP(x0x1)] Eq[logq(xTx0)P(xT)]+ Eq[t=2Tlogq(xt1xt,x0)P(xt1xt)]+ Eq[logP(x0x1)](9)
从式(7)不难看出,里面的 q q q q ( x 2 : T ∣ x 1 ) q(x_{2:T}|x_1) q(x2:Tx1),对于①

我们可得
E q [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) ] = E q ( x T ∣ x 0 ) [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) ] \mathbb{E}_q\left[\log \frac{P(x_T)}{q(x_T|x_0)}\right]=\mathbb{E}_{q(x_T|x_0)}\left[\log\frac{P(x_T)}{q(x_T|x_0)}\right] Eq[logq(xTx0)P(xT)]=Eq(xTx0)[logq(xTx0)P(xT)]
这是因为 q q q q ( x 1 : T ∣ x 0 ) q(x_{1:T}|x_0) q(x1:Tx0),而 E q [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) ] \mathbb{E}_q\left[\log \frac{P(x_T)}{q(x_T|x_0)}\right] Eq[logq(xTx0)P(xT)]里面只有 x T x_T xT这个随机变量,其他的随机变量里面都没有那关于 q ( x 1 : T − 1 ∣ x 0 ) q(x_{1:T-1}|x_0) q(x1:T1x0)求期望时,就完全是对常数求期望一样,完全不变。如果你不明白,我们可以做个推导

我们先看①
E q [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) ] = ∫ x 1 : T q ( x 1 : T ∣ x 0 ) log ⁡ P ( x T ) q ( x T ∣ x 0 ) d x 1 : T = ∫ x T ∫ x T − 1 ⋯ ∫ x 2 ∫ x 1 q ( x 1 : T ∣ x 0 ) log ⁡ P ( x T ) q ( x T ∣ x 0 ) d x 1 ⏟ d x 2 ⋯ d x T = ∫ x T ∫ x T − 1 ⋯ ∫ x 2 log ⁡ P ( x T ) q ( x T ∣ x 0 ) ∫ x 1 q ( x 1 : T ∣ x 0 ) d x 1 ⏟ d x 2 ⋯ d x T = ∫ x T ∫ x T − 1 ⋯ ∫ x 2 log ⁡ [ P ( x T ) q ( x T ∣ x 0 ) ] q ( x 2 : T ∣ x 0 ) d x 2 ⋯ d x T ⋮ = ∫ x T q ( x T ∣ x 0 ) log ⁡ P ( x T ) q ( x T ∣ x 0 ) d x T = E q ( x T ∣ x 0 ) [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) ] = − K L ( q ( x T ∣ x 0 ) ∣ ∣ P ( x T ) ) \begin{aligned}\mathbb{E}_q\left[\log \frac{P(x_T)}{q(x_T|x_0)}\right]=&\int_{x_{1:T}} q(x_{1:T}|x_0)\log \frac{P(x_T)}{q(x_T|x_0)}dx_{1:T}\\=&\int_{x_T}\int_{x_{T-1}}\cdots \int_{x_{2}}\underbrace{\int_{x_1} q(x_{1:T}|x_0)\log\frac{P(x_T)}{q(x_T|x_0)}dx_1}dx_{2}\cdots dx_{T}\\=&\int_{x_T}\int_{x_{T-1}}\cdots \int_{x_{2}}\underbrace{\log\frac{P(x_T)}{q(x_T|x_0)}\int_{x_1} q(x_{1:T}|x_0)dx_1}dx_{2}\cdots dx_{T}\\=&\int_{x_T}\int_{x_{T-1}}\cdots \int_{x_{2}}\log\left[\frac{P(x_T)}{q(x_T|x_0)}\right] q(x_{2:T}|x_0)dx_{2}\cdots dx_{T}\\\vdots&\\=&\int_{x_T}q(x_{T}|x_0)\log \frac{P(x_T)}{q(x_T|x_0)}dx_T\\=&{\color{red}\mathbb{E}_{q(x_T|x_0)}\left[\log\frac{P(x_T)}{q(x_T|x_0)}\right]}\\=&-KL\left(q(x_T|x_0)||P(x_T)\right)\end{aligned}\nonumber Eq[logq(xTx0)P(xT)]=======x1:Tq(x1:Tx0)logq(xTx0)P(xT)dx1:TxTxT1x2 x1q(x1:Tx0)logq(xTx0)P(xT)dx1dx2dxTxTxT1x2 logq(xTx0)P(xT)x1q(x1:Tx0)dx1dx2dxTxTxT1x2log[q(xTx0)P(xT)]q(x2:Tx0)dx2dxTxTq(xTx0)logq(xTx0)P(xT)dxTEq(xTx0)[logq(xTx0)P(xT)]KL(q(xTx0)∣∣P(xT))
对于②,③。也是一样的道理,所以式(9)得
log ⁡ P ( x 0 ) ≥ E q ( x 1 ∣ x 0 ) [ log ⁡ P ( x 0 ∣ x 1 ) ] + ∑ t = 2 T E q ( x t − 1 , x t ∣ x 0 ) [ log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ] + E q ( x T ∣ x 0 ) [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) ] = E q ( x 1 ∣ x 0 ) [ log ⁡ P ( x 0 ∣ x 1 ) ] + ∑ t = 2 T E q ( x t − 1 ∣ x 0 , x t ) q ( x t ∣ x 0 ) [ log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ] + E q ( x T ∣ x 0 ) [ log ⁡ P ( x T ) q ( x T ∣ x 0 ) ] = E q ( x 1 ∣ x 0 ) [ log ⁡ P ( x 0 ∣ x 1 ) ] + ∑ t = 2 T E q ( x t ∣ x 0 ) ∫ q ( x t − 1 ∣ x 0 , x t ) log ⁡ P ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) d x t − 1 + ∫ q ( x T ∣ x 0 ) log ⁡ P ( x T ) q ( x T ∣ x 0 ) d x T = E q ( x 1 ∣ x 0 ) [ log ⁡ P ( x 0 ∣ x 1 ) ] − ∑ t = 2 T E q ( x t ∣ x 0 ) [ K L ( q ( x t − 1 ∣ x t , x 0 ) ∣ ∣ P ( x t − 1 ∣ x t ) ) ] − K L ( q ( x T ∣ x 0 ) ∣ ∣ P ( x T ) ) (10) \begin{aligned}\log P(x_0)\ge& \mathbb{E}_{q(x_1|x_0)}\left[\log P(x_0|x_1)\right]+\sum\limits_{t=2}^T\mathbb{E}_{q(x_{t-1},x_{t}|x_0)}\left[\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}\right]+\mathbb{E}_{q(x_T|x_0)}\left[\log\frac{P(x_T)}{q(x_T|x_0)}\right]\\=& \mathbb{E}_{q(x_1|x_0)}\left[\log P(x_0|x_1)\right]+\sum\limits_{t=2}^T\mathbb{E}_{q(x_{t-1}|x_0,x_{t})q(x_{t}|x_0)}\left[\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}\right]+\mathbb{E}_{q(x_T|x_0)}\left[\log\frac{P(x_T)}{q(x_T|x_0)}\right]\\=&\mathbb{E}_{q(x_1|x_0)}\left[\log P(x_0|x_1)\right]+\sum\limits_{t=2}^T\mathbb{E}_{q(x_{t}|x_0)}\int q(x_{t-1}|x_0,x_t)\log \frac{P(x_{t-1}|x_t)}{q(x_{t-1}|x_{t},x_0)}dx_{t-1}+\int q(x_T|x_0)\log\frac{P(x_T)}{q(x_T|x_0)}dx_T\\=&\mathbb{E}_{q(x_1|x_0)}\left[\log P(x_0|x_1)\right]-\sum\limits_{t=2}^T\mathbb{E}_{q(x_t|x_0)}\left[KL(q(x_{t-1}|x_t,x_0)||P(x_{t-1}|x_t))\right]-KL\left(q(x_T|x_0)||P(x_T)\right)\end{aligned}\tag{10} logP(x0)===Eq(x1x0)[logP(x0x1)]+t=2TEq(xt1,xtx0)[logq(xt1xt,x0)P(xt1xt)]+Eq(xTx0)[logq(xTx0)P(xT)]Eq(x1x0)[logP(x0x1)]+t=2TEq(xt1x0,xt)q(xtx0)[logq(xt1xt,x0)P(xt1xt)]+Eq(xTx0)[logq(xTx0)P(xT)]Eq(x1x0)[logP(x0x1)]+t=2TEq(xtx0)q(xt1x0,xt)logq(xt1xt,x0)P(xt1xt)dxt1+q(xTx0)logq(xTx0)P(xT)dxTEq(x1x0)[logP(x0x1)]t=2TEq(xtx0)[KL(q(xt1xt,x0)∣∣P(xt1xt))]KL(q(xTx0)∣∣P(xT))(10)
所以,式(10)就是我们要优化的目标函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/687754.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 磁盘分区工具 gdisk / fdisk

fdisk 是传统的 Linux 磁盘分区工具,磁盘容量有2T的大小限制;gdisk 又叫 GPT fdisk, 作为 fdisk 的升级版,主要使用的是GPT分区类型,用来划分容量大于2T的硬盘,本文介绍使用方法。 简介 早期的磁盘使用 fdisk 工具分区…

计算机视觉中的计算几何

计算几何领域出现于 20 世纪 70 年代,研究解决几何问题的数据结构和算法。这尤其包括确定图像内的拓扑结构,或者实际上是更高维的表示,例如点邻域,这可以帮助从数字图像数据等中导出几何意义[1]。 计算机视觉主要涉及静态或动态图…

【Web后端】servlet基本概念

1.ServletAPI架构 HttpServlet继承GenericServletGenericServlet实现了Servlet接口,ServletConfig接口,Serializable接口自定义Servlet继承HttpServlet 2.Servlet生命周期 第一步:容器加载Servlet第二步:调用Servlet的无参构造方法&#xf…

智能助手上线,大模型提供云服务专属顾问

业务背景 在使用云服务的时候,当您遇到复杂问题,如配置、关联或计费方式不明确时,可能需要向客服提交工单进行技术沟通。在漫长的工作过程中,耗费了宝贵的时间和精力。 2024 年 4 月,百度智能云正式推出了融合文心大…

数据库SQL语言实战(八)

目录 练习题 题目一 题目二 题目三 题目四 题目五 题目六 题目七 题目八 题目九 题目十 练习题 题目一 找出年龄小于20岁且是“物理学院”的学生的学号、姓名、院系名称,按学号排序 create or replace view test6_01 as select S.sid,S.name,S.dname fr…

【基础算法总结】二分查找一

二分查找一 1. 二分查找2.在排序数组中查找元素的第一个和最后一个位置3.x 的平方根4.搜索插入位置 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励,我们一起努力吧!😃&#x1…

【Spring之依赖注入】2. Spring处理@Async导致的循环依赖失败问题

使用异步Async注解后导致的循环依赖失败详解 1 问题复现1.1 配置类1.2 定义Service1.3 定义Controller1.4 启动springboot报错 2.原因分析:看Async标记的bean注入时机2.1 循环依赖生成过程2.2 自检程序 doCreateBean方法 3.解决方案3.1 懒加载Lazy3.1.1 将Lazy写到A…

综合性练习(验证码案例)

目录 一、需求 二、准备工作 三、约定前后端交互接口 1、需求分析 2、接口定义 四、Hutool工具介绍 1、引入依赖 2、测试使用Hutool生成验证码 五、实现服务器端代码 代码解读: 六、调整前端页面代码 七、运行测试 随着安全性的要求越来越高&#xff0c…

Vue3专栏项目 -- 二、自定义From组件(下)

需求分析: 现在我们还需要一个整体的表单在单击某个按钮的时候可以循环的验证每个input的值,最后我们还需要有一个事件可以得到最后验证的结果,从而进行下一步的操作 如下,我们应该有一个form表单包裹着全部的input表单&#xf…

HC-05的简介与使用

蓝牙概述 蓝牙(Bluetooth)是一种用于无线通信的技术标准,允许设备在短距离内进行数据交换和通信。它是由爱立信(Ericsson)公司在1994年推出的,以取代传统的有线连接方式,使设备之间能够实现低功…

【Docker】Docker部署Java程序

Maven中使用打包插件 <build><finalName>duanjian</finalName><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><configuration><mainClass…

​在英特尔至强 CPU 上使用 Optimum Intel 实现超快 SetFit 推理

在缺少标注数据场景&#xff0c;SetFit 是解决的建模问题的一个有前途的解决方案&#xff0c;其由 Hugging Face 与Intel 实验室以及UKP Lab合作共同开发。作为一个高效的框架&#xff0c;SetFit 可用于对Sentence Transformers模型进行少样本微调。 SetFit 仅需很少的标注数据…