OpenCV图像处理——轮廓检测

目录

  • 图像的轮廓
    • 查找轮廓
    • 绘制轮廓
  • 轮廓的特征
    • 轮廓面积
    • 轮廓周长
    • 轮廓近似
    • 凸包
    • 边界矩形
    • 最小外接圆
    • 椭圆拟合
    • 直线拟合
  • 图像的矩特征
    • 矩的概念
    • 图像中的矩特征

图像的轮廓

在这里插入图片描述

查找轮廓

binary,contours,hierarchy=cv.findContours(img,mode,method)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

绘制轮廓

cv.drawContours(img,coutours,index,color,width)

在这里插入图片描述

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimg = cv2.imread('./汪学长的随堂资料/4/图像操作/contours.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny=cv.Canny(img_gray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
img=cv.drawContours(img,contours,-1,(0,0,255),2)
plt.imshow(img[:,:,::-1])

在这里插入图片描述

轮廓的特征

在这里插入图片描述

轮廓面积

area=cv.contourArea(cnt)

轮廓周长

perimeter=cv.arcLength(cnt,isclosed)

在这里插入图片描述

轮廓近似

在这里插入图片描述

approx=cv.approxPolyDP(cnt,epsilon,isclosed)

在这里插入图片描述

img = cv2.imread('./汪学长的随堂资料/4/图像操作/contours2.png')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt=contours[0]
area=cv.contourArea(cnt)
length=cv.arcLength(cnt,True)
esplion=0.1*length
approx=cv.approxPolyDP(cnt,esplion,True)
img=cv.polylines(img,[approx],True,(0,0,255),2)
plt.imshow(img[:,:,::-1])

在这里插入图片描述

凸包

在这里插入图片描述

hull=cv.convexHull(points,clockwise,returnPoints)

在这里插入图片描述
在这里插入图片描述

img=cv.imread('./image/star 2.jpeg')
img1=img.copy()
imggray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
canny=cv.canny(imggray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
hulls=[]
for cnt in contours:hull=cv.convexHull(cnt)hulls.append(hull)
img1=cv.drawContours(img1,hulls,-1,(0,255,0),2)
plt.imshow(img1[:,:,::-1])

在这里插入图片描述

边界矩形

在这里插入图片描述
在这里插入图片描述

img=cv.imread('./image/arrows,jpg')
img_gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(img_gray,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
x,y,w,h=cv.boundingRect(cnt)
imgRect=cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),3)
plt.imshow(imgRect[:,:,::-1])

在这里插入图片描述

s=cv.minAreaRect(cnt)
a=cv.boxPoints(s)
a=np.int0(a)
cv.polylines(imgRect,[a],True,(0,0,255),3)
plt.imshow(imgRect[:,:,::-1])

在这里插入图片描述

最小外接圆

在这里插入图片描述

(x,y),r=cv.minEnclosingCircle(cnt)
center=(int(x),int(y))
r=int(r)
imgcircle=cv.circle(img,center,r,(0,255,0),3)
plt.imshow(imgcircle[:,:,::-1])

在这里插入图片描述

椭圆拟合

在这里插入图片描述

ellipse=cv.fitEllipse(cnt)
imgellipse=cv.ellipse(img,ellipse,(0,255,255,3))
plt.imshow(imgellipse[:,:,::-1])

在这里插入图片描述

直线拟合

在这里插入图片描述

output=cv.fitLine(points,distType,param,aeps)

在这里插入图片描述

[vx,vy,x,y]=cv.fitLine(cnt,cv.DIST_L2,0,0.01,0.01)
rows,cols=img.shape[:2]
lefty=int((-x*vy/vx)+y)
righty=int(((cols-x)*vy/vx)+y)
imgline=cv.line(img,(0,lefty),(cols-1,righty),(0,0,255),3)
plt.imshow(imgline[:,:,::-1])

在这里插入图片描述

图像的矩特征

在这里插入图片描述

矩的概念

在这里插入图片描述

图像中的矩特征

在这里插入图片描述
在这里插入图片描述

moments(array,binaryImage=False)

在这里插入图片描述

img=cv.imread('./image/arrows.jpg',0)
imgmn=cv.moments(img)
imghu=cv.HuMoments(imgmn)
ret,thresh=cv.threshold(img,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
mn=cv.moments(cnt)
hu=cv.HuMoments(mn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/68778.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用于量子通信和互联网的光量子芯片

近年来,新兴的光量子芯片在量子通信和量子互联网领域取得了重大进展。光量子芯片芯片具有可扩展、稳定和低成本等特点,为微型化应用开辟了新的可能性。 7月14日,一篇发表在《light: science & applications》的文章概述了用于量子通信的光…

机器学习:特征工程之特征预处理

目录 特征预处理 1、简述 2、内容 3、归一化 3.1、鲁棒性 3.2、存在的问题 4、标准化 ⭐所属专栏:人工智能 文中提到的代码如有需要可以私信我发给你😊 特征预处理 1、简述 什么是特征预处理:scikit-learn的解释: provide…

Qt 之 QPushButton,信号与槽机制

文章目录 前言一、QPushButton二、信号与槽机制总结 前言 一、QPushButton 当我们开发基于Qt框架的图形用户界面(GUI)应用程序时,经常需要在界面上添加按钮来实现用户交互。Qt提供了一个名为 QPushButton 的类作为按钮控件的实现。QPushButt…

【LeetCode-简单】剑指 Offer 29. 顺时针打印矩阵(详解)

题目 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。 示例 1: 输入:matrix [[1,2,3],[4,5,6],[7,8,9]] 输出:[1,2,3,6,9,8,7,4,5]示例 2: 输入:matrix [[1,2,3,4],[5,6,7,8],[9,10,1…

【设计模式】前端控制器模式

前端控制器模式(Front Controller Pattern)是用来提供一个集中的请求处理机制,所有的请求都将由一个单一的处理程序处理。该处理程序可以做认证/授权/记录日志,或者跟踪请求,然后把请求传给相应的处理程序。以下是这种…

2023年武汉中级工程师职称评审条件是什么?评审材料需要哪些呢?

2023年武汉中级职称评审马上全面开启,预计8月底或者9月初就会开始申报了。 要求:学历、社保、论文、业绩等各类材料等 出证时间:现在申报,年底出结果,次年3-5月出证 一、2023年武汉中级工程师职称评审条件学历条件是什…

elementui form组件出现英文提示

今天让解决一个bug,是表单组件提示词会出现英文。 问题情景如下: 有时会出现中文,有时会出现英文。 解决方法: 经查看,代码采用的是elementui的form组件,在el-form-item中使用了required属性,同…

【图像分类】理论篇(4)图像增强opencv实现

随机旋转 随机旋转是一种图像增强技术,它通过将图像以随机角度进行旋转来增加数据的多样性,从而帮助改善模型的鲁棒性和泛化能力。这在训练深度学习模型时尤其有用,可以使模型更好地适应各种角度的输入。 原图像: 旋转后的图像&…

YOLOv5基础知识入门(6)— 激活函数(Mish、Sigmoid、Tanh、ReLU、Softmax、SiLU等)

前言:Hello大家好,我是小哥谈。激活函数(Activation functions)对于人工神经网络模型去学习、理解非常复杂和非线性的函数具有十分重要的作用。YOLOv5模型训练过程中即使用了激活函数,可以改善模型的训练速度和准确性。…

分类预测 | MATLAB实现EVO-CNN多输入分类预测

分类预测 | MATLAB实现EVO-CNN多输入分类预测 目录 分类预测 | MATLAB实现EVO-CNN多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现EVO-CNN多输入分类预测 2.代码说明:量谷优化卷积神经网络的数据分类预测:要求于Matlab …

linux pwn 相关工具

环境搭建 虚拟机安装 镜像下载网站为了避免环境问题建议 22.04 ,20.04,18.04,16.04 等常见版本 ubuntu 虚拟机环境各准备一份。注意定期更新快照以防意外。虚拟机建议硬盘 256 G 以上,内存也尽量大一些。硬盘大小只是上界&#…

el-table分页后序号连续的两种方法

实现效果&#xff1a; 第一页排序到10&#xff0c;第二页的排序应从11开始 实现方法一&#xff1a; 在el-table的序号列中使用template定义 <el-table><el-table-columnmin-width"10%"label"序号"><template slot-scope"scope"…