单细胞分析:多模态 reference mapping (2)

引言

本文[1]介绍了如何在Seurat软件中将查询数据集与经过注释的参考数据集进行匹配。我们展示了如何将来自不同个体的人类骨髓细胞(Human BMNC)的人类细胞图谱(Human Cell Atlas)数据集,有序地映射到一个统一的参考框架上。

我们之前利用参考映射的方法来标注查询数据集中的细胞标签。在Seurat v4版本中,大幅提高了执行集成任务,包括参考映射的速度和内存效率,并且还新增了将查询细胞投影到之前计算好的UMAP(Uniform Manifold Approximation and Projection,均匀流形近似和投影)可视化界面的功能。

内容

在本示例中,我们将展示如何利用一个已经建立的参考数据集来解读单细胞RNA测序(scRNA-seq)查询:

  1. 根据参考数据集定义的细胞状态集,对每个查询细胞进行标注。
  2. 将每个查询细胞投影到之前计算完成的UMAP可视化界面上。
  3. 估算在CITE-seq参考数据集中测量到的表面蛋白的预测水平。

要运行本示例,请确保安装了Seurat v4,该软件可在CRAN上下载。同时,您还需要安装SeuratDisk包。

library(Seurat)
library(ggplot2)
library(patchwork)

options(SeuratData.repo.use = "http://seurat.nygenome.org")

Example 2:绘制人类骨髓细胞图谱

Data

例如,我们将由人类细胞图谱项目生成的,来自八位不同捐献者的人类骨髓单核细胞(BMNC)数据集进行了映射。我们以之前使用加权最近邻分析(WNN)方法分析过的人类BMNC的CITE-seq参考集作为比对标准。

本文除了展示与之前PBMC案例相同的参考映射功能外,还进一步介绍了:

  • 如何构建一个监督的主成分分析(sPCA)转换。
  • 如何将多个不同的数据集依次映射到同一个参考集上。
  • 采取哪些优化措施来提高映射过程的速度。
# Both datasets are available through SeuratData
library(SeuratData)
#load reference data
InstallData("bmcite")
bm <- LoadData(ds = "bmcite")
#load query data
InstallData('hcabm40k')
hcabm40k <- LoadData(ds = "hcabm40k")

参考数据集构建了一个加权最近邻(WNN)图,该图体现了在本次CITE-seq实验中RNA和蛋白质数据的加权整合情况。

基于这个WNN图,我们可以生成一个UMAP(Uniform Manifold Approximation and Projection)的可视化表示。在计算过程中,我们设置参数return.modelTRUE,这样就可以将待查询的数据集映射到这个UMAP可视化空间中。

bm <- RunUMAP(bm, nn.name = "weighted.nn", reduction.name = "wnn.umap"
              reduction.key = "wnnUMAP_", return.model = TRUE)
DimPlot(bm, group.by = "celltype.l2", reduction = "wnn.umap"
alt

计算 sPCA 变换

如我们在论文中所述,我们首先执行一个“监督式”的主成分分析(PCA)。该分析旨在找出转录组数据的最佳转换方式,以最准确地反映加权最近邻(WNN)图中的结构特征。通过这种方法,我们可以将蛋白质和RNA的测量值进行加权组合,以“指导”PCA的计算过程,从而凸显出数据中最为重要的变异因素。一旦计算出这种转换,就可以将其应用到任何查询数据集上。尽管我们也可以计算并应用传统的PCA投影,但在处理通过WNN分析构建的多模态参考数据时,我们更推荐使用监督式PCA(sPCA)。

sPCA的计算过程只需进行一次,之后就可以快速地将其应用到每一个查询数据集上。

bm <- ScaleData(bm, assay = 'RNA')
bm <- RunSPCA(bm, assay = 'RNA', graph = 'wsnn')

计算缓存的邻居索引

鉴于我们需要将多个查询样本与同一个参考集进行比对,我们可以对那些仅与参考集相关的特定步骤进行缓存处理。这个步骤虽然是可选的,但在处理多个样本的映射时,它可以有效提升运算速度。

我们首先在参考集的监督式PCA(sPCA)空间内计算出前50个最近邻。然后,我们将这些信息保存在Seurat对象的spca.annoy.neighbors属性中,并通过设置cache.index = TRUE来缓存annoy索引数据结构。

bm <- FindNeighbors(
  object = bm,
  reduction = "spca",
  dims = 1:50,
  graph.name = "spca.annoy.neighbors"
  k.param = 50,
  cache.index = TRUE,
  return.neighbor = TRUE,
  l2.norm = TRUE
)
  • 如何保存和加载缓存的烦恼索引?

如果您需要保存或加载一个利用 "annoy" 方法和启用了缓存索引(通过设置 cache.index = TRUE)创建的 Neighbor 对象的缓存索引,可以使用 SaveAnnoyIndex() 和 LoadAnnoyIndex() 这两个函数来完成。需要注意的是,这个索引不能通过常规方式保存到 RDS 或 RDA 文件,这意味着它不会在 R 会话重新启动或使用 saveRDS/readRDS 函数保存和读取包含该索引的 Seurat 对象时被正确保留。因此,每次当 R 重新启动或者您从 RDS 文件加载参考 Seurat 对象时,都需要使用 LoadAnnoyIndex() 函数来重新将 Annoy 索引加载到 Neighbor 对象中。SaveAnnoyIndex() 函数生成的文件可以与参考 Seurat 对象一起分发,以便在需要时将其添加到参考对象中的 Neighbor 对象里。

bm[["spca.annoy.neighbors"]]

## A Neighbor object containing the 50 nearest neighbors for 30672 cells

SaveAnnoyIndex(object = bm[["spca.annoy.neighbors"]], file = "/brahms/shared/vignette-data/reftmp.idx")
bm[["spca.annoy.neighbors"]] <- LoadAnnoyIndex(object = bm[["spca.annoy.neighbors"]], file = "/brahms/shared/vignette-data/reftmp.idx")

查询数据集预处理

本节我们将展示如何将来自多位捐献者的骨髓样本与一个多模态骨髓参考集进行比对。这些待查询的数据集来源于人类细胞图谱(Human Cell Atlas,HCA)的免疫细胞图谱中的骨髓数据集,可以通过SeuratData包访问。提供的数据集是一个合并后的对象,涵盖了8位捐献者的数据。我们首先需要将这些数据拆分成8个独立的Seurat对象,对应每位捐献者,然后分别进行映射分析。

library(dplyr)
library(SeuratData)
InstallData('hcabm40k')
hcabm40k.batches <- SplitObject(hcabm40k, split.by = "orig.ident")

接下来,我们按照参考数据集的处理方式对查询数据集进行标准化处理。具体来说,参考数据集是通过NormalizeData()函数采用对数标准化的方法进行处理的。如果参考数据集是利用SCTransform()函数进行标准化的,那么查询数据集同样需要应用SCTransform()函数来进行标准化处理。

hcabm40k.batches <- lapply(X = hcabm40k.batches, FUN = NormalizeData, verbose = FALSE)

Mapping

接下来,我们在每位捐献者的数据集与多模态参考集之间确定锚点。为了缩短映射时间,我们采用了一种优化的命令,该命令通过输入预先计算好的参考邻居集合,并关闭锚点筛选功能来实现效率提升。

anchors <- list()
for (i in 1:length(hcabm40k.batches)) {
  anchors[[i]] <- FindTransferAnchors(
    reference = bm,
    query = hcabm40k.batches[[i]],
    k.filter = NA,
    reference.reduction = "spca"
    reference.neighbors = "spca.annoy.neighbors"
    dims = 1:50
  )
}

然后我们单独映射每个数据集。

for (i in 1:length(hcabm40k.batches)) {
  hcabm40k.batches[[i]] <- MapQuery(
    anchorset = anchors[[i]], 
    query = hcabm40k.batches[[i]],
    reference = bm, 
    refdata = list(
      celltype = "celltype.l2"
      predicted_ADT = "ADT"),
    reference.reduction = "spca",
    reduction.model = "wnn.umap"
  )
}

探索映射结果

现在映射已完成,我们可以可视化各个对象的结果

p1 <- DimPlot(hcabm40k.batches[[1]], reduction = 'ref.umap', group.by = 'predicted.celltype', label.size = 3)
p2 <- DimPlot(hcabm40k.batches[[2]], reduction = 'ref.umap', group.by = 'predicted.celltype', label.size = 3)
p1 + p2 + plot_layout(guides = "collect")
alt

我们还可以把所有的数据对象合并成一个统一的数据集。需要注意的是,这些数据对象都已经通过参考集被整合到了一个共同的分析空间中。之后,我们就能够将这些数据的分析结果一并展现出来。

# Merge the batches 
hcabm40k <- merge(hcabm40k.batches[[1]], hcabm40k.batches[2:length(hcabm40k.batches)], merge.dr = "ref.umap")
DimPlot(hcabm40k, reduction = "ref.umap", group.by =  "predicted.celltype", label = TRUE, repel = TRUE, label.size = 3) + NoLegend()
alt

我们可以对查询细胞中的基因表达模式、聚类预测得分以及(估算得到的)表面蛋白水平进行可视化展示:

p3 <- FeaturePlot(hcabm40k, features = c("rna_TRDC""rna_MPO""rna_AVP"), reduction = 'ref.umap'
                  max.cutoff = 3, ncol = 3)

# cell type prediction scores
DefaultAssay(hcabm40k) <- 'prediction.score.celltype'
p4 <- FeaturePlot(hcabm40k, features = c("CD16 Mono""HSC""Prog-RBC"), ncol = 3
                  cols = c("lightgrey""darkred"))

# imputed protein levels
DefaultAssay(hcabm40k) <- 'predicted_ADT'
p5 <- FeaturePlot(hcabm40k, features = c("CD45RA""CD16""CD161"), reduction = 'ref.umap',
                  min.cutoff = 'q10', max.cutoff = 'q99', cols = c("lightgrey""darkgreen") ,
                  ncol = 3)
p3 / p4 / p5
alt
Reference
[1]

Source: https://satijalab.org/seurat/articles/multimodal_reference_mapping

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/688009.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【busybox记录】【shell指令】cut

目录 内容来源&#xff1a; 【GUN】【cut】指令介绍 【busybox】【cut】指令介绍 【linux】【cut】指令介绍 使用示例&#xff1a; 关于参数的特殊说明&#xff1a; 打印行中选定部分 - 输出每行的第n-m个字节 打印行中选定部分 - 输出每行的第n-m个字符 打印行中选定…

Minimal-Supervised Medical Image Segmentation via Vector Quantization Memory

文章目录 Minimal-Supervised Medical Image Segmentation via Vector Quantization Memory摘要方法实验结果 Minimal-Supervised Medical Image Segmentation via Vector Quantization Memory 摘要 辅助重构分支&#xff1a;该分支通过提供额外的监督并产生学习视觉表示所需…

语言基础 /CC++ 可变参函数设计与实践,va_ 系列实战详解(强制参数和变参数的参数类型陷阱)

文章目录 概述va_ 系列定义va_list 类型va_start 宏从变参函数的强制参数谈起宏 va_start 对 char 和 short 类型编译告警宏 va_start 源码分析猜测 __va_start 函数实现 va_arg 宏宏 va_arg 无法接受 char 和 short为啥va_arg可解析int却不能解析float类型&#xff1f;宏 va_a…

windows设置Redis服务后台自启动

1.通过CMD命令行工是进入Redis安装目录&#xff0c;将Redis服务注册到 Windows服务中 redis-server.exe --service-install redis.windows.conf --loglevel verbose 2.查看—下Redis服务是否注册 WinR输入services.msc&#xff0c;确定进入&#xff0c;再查找是否有Redis 3.启动…

回溯法、全排列、子集等

回溯法 感想&#xff1a;回溯算法本质是一个循环&#xff0c;有点像while循环 一些回溯法&#xff08;递归&#xff09;的经典应用 1.全排列 2.子集 其实上面两个点&#xff0c;也是对应着高中数学里面的“排列”与“组合” 1.全排列问题 给定一个集合S{a,b,c}&#xff0…

实现WPF中的数据更新 属性通知界面:INotifyPropertyChanged接口

在WPF (Windows Presentation Foundation) 应用程序中&#xff0c;当数据发生变化时&#xff0c;通常希望UI能够自动更新以反映这些变化。为了实现这一功能&#xff0c;WPF 提供了数据绑定机制&#xff0c;并且配合 INotifyPropertyChanged 接口使用&#xff0c;可以在数据模型…

【北京迅为】《iTOP-3588从零搭建ubuntu环境手册》-第3章 Ubuntu20.04系统设置

RK3588是一款低功耗、高性能的处理器&#xff0c;适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用&#xff0c;RK3588支持8K视频编解码&#xff0c;内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…

RFID工业读写器在危化品储存管理的优势有哪些?

在化学品和危险品储存管理领域&#xff0c;传统的管理方式通常存在一些痛点和挑战&#xff1a;化学品和危险品的管理主要依赖于人工记录和监控&#xff0c;容易出现数据不准确、遗漏、混淆等问题&#xff0c;导致安全隐患和管理困难。化学品和危险品的存储和管理涉及到一系列安…

XTuner笔记

为什么要微调&#xff1a; 1. 模型不具备一些私人定制的知识 2。模型回答问题的套路你不满意。 对应衍生出来两种概念 增量预训练微调&#xff1a; 使用场景&#xff1a;让基座模型学习到一些新知识&#xff0c;如某个垂类领域的常识训练数据&#xff1a;文章、书籍、代码等…

护眼台灯和普通台灯差别很大吗?专业护眼灯品牌有哪些?

随着科技的不断演进&#xff0c;台灯的设计也日益脱胎换骨&#xff0c;从曾经的笨重造型转变为如今轻盈雅致的外观。它们的功能同样经历了多样化的革新&#xff0c;变得更加人性化和便捷。作为学习、阅读和办公环境中不可或缺的照明工具&#xff0c;台灯所提供的光线舒适度至关…

寻找最大价值的矿堆 - 矩阵

系列文章目录 文章目录 系列文章目录前言一、题目描述二、输入描述三、输出描述四、Java代码五、测试用例 前言 本人最近再练习算法&#xff0c;所以会发布一些解题思路&#xff0c;希望大家多指教 一、题目描述 给你一个由’0’(空地)、‘1’(银矿)、‘2’(金矿)组成的地图…

blender 制作圆角立方体模型,倒角实现。cocos 使用。导出fbx

图片&#xff1a; 步骤&#xff1a; 1.首先创建一个立方体&#xff0c;这里可以使用默认的立方体。 2.在属性面板选择如“扳手”图标一样的修改器工具。 3.设置数量和段数实现圆角的圆滑效果&#xff0c;没有菱角。 保存导出相关的教程&#xff1a;