深入理解指针(1)

在之前我们学习了许多c语言的基础知识,让我们初步了解了c语言,接下来将来到c语言中一个重点的知识章节--指针,学习完指针后将会让我们对c语言有更深入的理解,接下来就开始指针的讲解

0c4cd194906642719252a97dc4cf10c9.png

1.内存与地址

1.指针

在了解内存与地址前,先来看一个生活中的案例
我们都知道当到一个陌生的楼房里时,,如果这个楼房很大通过门牌号去查找将会是一个快速找到的方法,如果得到房间号,就可以快速的找房间

1ddf563053c846b9978e70b9d8ade869.png

在生活中有了门牌号就可以快速找到房间,大大提升了效率

如果把上面的例子对照到计算机中,又是怎么样呢?
我们知道在计算机中都有内存,可能是4G/8G/16G等等,但无论是多大的内存都是一份相当大的空间,而数据又是放在内存当中的,我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中

5bea9bff736e4a40a9e0ee7896b7e9fa.png

那在内存这么大的空间里,数据是依据什么来找到的呢?那那些内存空间如何高效的管理呢?
在生活当中把楼房划分成一个个房间,其实在内存当中也是相同的道理,为了更高效的对内存进行使用和管理,其实也是把内存划分为⼀个个的内存单元,每个内存单元的大小取1个字节我们可以理解为内存像楼房一样被划分成了许多房间,每个房间就是一个内存单元

有的读者会提出1个字节是什么?
这时我们就要知道计算机中的单位

bit - ⽐特位
Byte - 字节         1Byte=8Bit
KB                       1kB=1024Byte
MB                      1MB=1024KB
GB                       1GB=1024MB        
TB                        1TB=1024GB
PB                        1PB=1024TB
 

其中1比特在内存中可以存储1个二进制位中的1或者0

在计算机中的每个内存单元,相当于⼀个学生宿舍,⼀个字节空间里面能放8个比特位,就好比同学们住的八人间,每个人是⼀个比特位。

为了CPU能更高效调用内存,就如给楼房的房间编号一样,内存中每个内存单元也有不同的编号,这也就是内存单元的地址,在c语言中给这些地址起了新的名字:指针

在此可以理解为:内存单元编号=地址=指针

2.如何理解地址的产生

通过以上的讲解我们知道CPU是通过地址来获取内存中的数据,再将处理后的数据存放在内存当中,那么该过程中内存单元的地址是怎么传送的呢?
首先,必须理解,计算机内是有很多的硬件单元,而硬件单元是要互相协同工作的。但是硬件与硬件之间是互相独立的,要使它们之间建立通信这就需要用"线"连起来

CPU和内存之间也是有大量的数据交互的,所以,两者必须也用线连起来。在这两者之间有地址总线,控制总线,数据总线。在此我们需要了解的是地址总线

 CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,而因为内存中字节
很多,所以需要给内存进行编址。且计算机中的编址,并不是把每个字节的地址记录下来,而是通过硬件设计完成的。
我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表示0,1【电脉冲有无】,那么⼀根线,就能表示2种含义,2根线就能表示4种含义,依次类推。32根地址线,就能表示2^32种含义,每⼀种含义都代表⼀个地址。地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传入CPU内寄存器。

2.指针变量与地址

1.取地址操作符(&)

int main()
{int a = 20;return 0;
}

变量创建的本质其实其实是在内存当中申请内存空间 例如以上代码就申请了4个字节的内存空间来存放20

以上就是20所存放的内存空间地址,但为什么显示的是14的地址呢?
其实这的14是用16进制表示,转换成10进制就是20

在以上还可以发现20所存放每个字节都有地址,再一次验证了在上文提到的每个内存单元都有地址

通过调试中发现内存中都没有关于a变量的信息,那么a是否对于编译器来说是没有作用的呢
其实确实是这样的,对于编译器来说通过地址就可以找到内存空间,其实这个a是给我们程序员来看的,让我们知道使用a就是使用对应内存的4个字节

那我们如何才能拿到a的地址呢?
这时就要用到&--(取地址操作符),若在以上代码中加入&a,它的作用就是拿到变量的地址

注:这里的&是一个单目操作符,不要与按位与&混淆,按位与是一个双目操作符

我们知道变量是有4个地址,那么&之后取出的是哪个呢? 

#include<stdio.h>
int main()
{int a = 20;printf("%p", &a);return 0;
}

这时就要用到%p这个占位符,%p的作用在printf函数中是打印出地址

运行程序就可以看到打印出的是a首个字节的地址,所以就可以知道&取出的是第一个字节的地址

2.指针变量和解引用操作符(*) 

1.指针变量 

 那如果想把变量的地址再存储到另一个变量当中应该如何操作呢?
如果这时将&a存放到pa变量中,那么这个变量的类型就是int*
pa是用来存放指针(地址)的,所以pa是指针变量
int*pa=&a 在这里pa左边写的是 int* , * 是在说明pa是指针变量,而前面的 int 是在说明pa指向的是整型(int)类型的对象

2.解引用操作符

#include<stdio.h>
int main()
{int a = 20;int* pa=&a;return 0;
}

在以上代码中pa里存放着a的地址,那如果要通过pa来找到a应该怎么表示呢?
这时就要用到*(解引用操作符),*pa就是通过pa这个指针变量内存放的值找到a

例如要把a的值改成200,就可以通过*pa来实现

#include<stdio.h>
int main()
{int a = 20;int* pa=&a;*pa=200;printf("%d",a);return 0;
}

 这时有的读者会发问为什么要通过pa来将a的值修改,不是可以直接让a=200来实现吗?
在电视剧狂飙中当高齐强身份很高时有一些事就不再适合亲自出手,就比如说他对老墨说我想吃鱼,老墨就会帮他处理棘手的事    有时我们只是拿到了地址信息,这时就只能通过解引用指针变量的方式来改变变量的值

3.指针变量的大小

首先我们要知道指针变量是用来存放地址的,一个地址需要多大空间,那么指针变量就有多大

前面的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产生的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。
如果指针变量是用来存放地址的,那么指针变量的大小就得是4个字节的空间才可以。
同理64位机器,假设有64根地址线,⼀个地址就是64个二进制位组成的⼆进制序列,存储起来需要8个字节的空间,指针变量的大小就是8个字节

结论:
• 32位平台下地址是32个bit位,指针变量大小是4个字节
• 64位平台下地址是64个bit位,指针变量大小是8个字节 

• 指针变量的大小与指针变量的类型无关,只要指针类型的变量,在相同的平台下,大小都是相同的。


3. 指针变量类型的意义 

在以上讲解中我们知道了指针变量的大小与指针的类型无关,那么指针变量的类型有什么意义呢?
其实指针变量大小还是有意义的,接下来我们将学习其意义

1. 指针的解引用


在以上当中将a的值初始化为0x11223344,因为0x之后表示16进制的数,而一个16进制数又可以转化为4个二进制数,两个16进制数就可以转化为8个二进制数,所占空间就为1字节
这样就可以让存储这个数内存当中的每个内存单元都存放数

当讲&a放入int*类型的指针变量时,*pa会发现a所指向都每个内存单元都被被改成了0,*pa=0一次访问了4个字节

 在以上可以发现当讲指针变量pa的类型改为char*时,就*pa=0就只能将a当中的一个字节改为0,而且他的未改变,*pa=0一次访问了1个字节

 结论:指针的类型决定了,对指针解引用的时候有多大的权限(⼀次能操作几个字节)

2. 指针+-整数

由以上代码可见&n+与pa+1都使得地址增加了4,而pc+1只让地址增加了1 

 我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。
这就是指针变量的类型差异带来的变化。指针+1,其实跳过1个指针指向的元素。

正如以上代码可以发现指针可以+1,那也可以-1。

 

结论:指针的类型决定了指针向前或者向后走一步有多大(距离) 

3 void* 指针

在以上代码中可以看到当用char*类型的指针变量pc存储整形变量n的地址时,编译器会爆出以上警告

而当用void*来接收&n时候就不会出现警告

在指针类型中有⼀种特殊的类型是 void * 类型的,可以理解为无具体类型的指针(或者叫泛型指
),这种类型的指针可以用来接受任意类型地址。 

注:void* 类型的指针也是有局限性的,不能直接进行指针的+-整数和解引用的运算。

那么 void* 类型的指针到底有什么用呢?
⼀般 void* 类型的指针是使用在函数参数的部分,
用来接收不同类型数据的地址这样的设计可以
实现
泛型编程的效果。使得⼀个函数来处理多种类型的数据,在之后深入会讲解。
 

4. 关键字const 

1.const修饰变量

当对被const修饰后的变量重新赋值时,程序如以上一样就会报错

上述代码中n是不能被修改的,其实n本质是变量,所以被const修饰后就成为了常变量
只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就行修改,就不符合语法规则,就报错,致使没法直接修改n。

2.const修饰指针变量

⼀般来讲const修饰指针变量,可以放在*的左边,也可以放在*的右边,但意义是不⼀样的

int main()
{int a = 20;const int*pa=&a;*pa = 0;return 0;
}

 

int main()
{int a = 20;int const*pa=&a;*pa = 0;return 0;
}

 通过以上3个不同的代码可以发现
• const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。
但是指针变量本身的内容可变。
• const如果放在*的右边,修饰的是指针变量本身,保证了指针变量的内容不能修改,但是指针指
向的内容,可以通过指针改变。

5. 指针运算

1.指针+- 整数

我们知道数组在内存当中是练习存放的,之前找数组元素都是通过数组下标来查找的,学习了指针后,这时就可以通过地址都方法找到数组元素 

#define  _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int main()
{int arr[10] = { 0,1,2,3,4,5,6,7,8,9 };int* p = &arr[0];int sz = sizeof(arr) / sizeof(arr[0]);for(int i=0;i<sz,i++){printf("%d ", *(p+i));}return 0;
}

 

2.指针-指针

我们首先要知道指针-指针的绝对值计算的是指针和指针之间的元素个数
注:前提条件是两个指针指向的是同一个内存空间

我们知道利用库函数strlen可以计算字符串的长度,那么如果不使用这个库函数,应该如何去计算呢?

#include<stdio.h>
size_t my_strlen(char*s)
{char* p = s;while (*p != '\0'){p++;}return p-s;
}int main()
{char arr[] = "abcdef";//这里数组名表示首元素的地址printf("%zd", my_strlen(arr));return 0;
}

因为字符串结束的标志是\0,所以通过\0之前的指针-第一个字符的指针就得出这个字符串的长度

这时有的读者会想那是否有指针+指针呢?
其实这就和日期一样,日期-日期可计算出之间差的天数,日期+日期是没有意义的,指针也同理

3.指针的关系运算

指针之间的关系运算其实就是对指针之间的大小进行比较

例如以上打印数组也可以用关系运算来实现代码

#include<stdio.h>int main()
{int arr[10] = { 0,1,2,3,4,5,6,7,8,9 };int* p = &arr[0];int sz = sizeof(arr) / sizeof(arr[0]);while(p<arr+sz){printf("%d ", *p);p++;}return 0;
}

6.野指针

1.野指针形成原因

1. 指针未初始化

局部变量指针未初始化,默认为随机值

 

 2. 指针越界访问

#include <stdio.h>
int main()
{int arr[10] = {0};int *p = &arr[0];int i = 0;for(i=0; i<=10; i++){//当指针指向的范围超出数组arr的范围时,p就是野指针*(p++) = i;}return 0;
}

以上代码中数组大小初始化为10,而arr[10]已经不在arr的范围内

3. 指针指向的空间释放

#include <stdio.h>
int* test()
{int n = 100;return &n;
}int main()
{int*p = test();printf("%d\n", *p);
return 0;
}

我们知道局部变量在出作用域后就会销毁,所以在以上代码中出test函数后通过地址就无法在找到n

2.如何规避野指针

1.指针初始化

如果明确知道指针指向哪里就直接赋值地址,如果不知道指针应该指向哪里,可以给指针赋值NULL.

#include <stdio.h>
int main()
{
int num = 10;
int*p1 = &num;
int*p2 = NULL;
return 0;
}

例如以上代码我们知道p2为野指针就给它初始化赋值NULL,这样再之后就知道p2是野指针就不要去访问 如果解引用p2程序就会出现错误

2. 不要让指针越界访问

⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问

3.指针变量不再使用时,及时置NULL,指针使用之前检查有效

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,当不再使用这个指针访问空间的
时候,我们可以把该指针置为NULL。  

我们可以把野指针想象成野狗,野狗放任不管是非常危险的,所以我们可以找一棵树把野狗拴起来,就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓起来,就是把野指针暂时管理起来。不过野狗即使拴起来我们也要绕着走,不能去挑逗野狗。对于指针也是,在使用指针之前要判断是不是野指针,不是才能使用

 

int main()
{int*pa=NULL;if(pa!=NULL){*pa=100;}return 0;
}

正如以上代码一开始将pa置为空指针,用一个if语句使得pa不为空指针的时候再对pa解引用并赋值 

4. 避免返回局部变量的地址

就如以上提到的不要返回局部变量的地址,因为出作用域后局部变量会被销毁

7.传址调用与传值调用

在编写一些程序时,穿给函数的实参是数值时是无法解决问题的,例如要实现a,b两个变量的交换以下代码能实现吗?

#define  _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
void Exchange(int x, int y)
{int z = x;x = y;y = z;
}int main()
{int a = 10;int b = 20;Exchange(a, b);printf("a=%d b=%d", a, b);return 0;
}

 

这时就会发现a和b没有互换,这是为什么呢?我们调试程序看看 

 这时就会发现存放a的地址与存放x的地址不同,存放b的地址与存放y的地址不同,以上代码只是交换了x和y,但因为x和y是形参只是实参的一份临时拷贝,所以a和b没能实现交换
像以上Exchnage函数在使用的时候,是把变量本身直接传递给了函数,这种叫
传值调用

那要使用调用函数的方法实现两个数交换,正确方法是什么样的呢?

这时就要用到传址调用,将a和b的地址传给形参

#define  _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
void Exchange(int*x, int*y)
{int z = *x;*x = *y;*y = z;
}int main()
{int a = 10;int b = 20;Exchange(&a, &b);printf("a=%d b=%d", a, b);return 0;
}

通过以上调试发现存放a的地址与存放x的地址相同,存放b的地址与存放y的地址相同
以上就是利用
传址调用

传址调用,可以让函数和主调函数之间建立真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采用传值调用。如果函数内部要修改主调函数中的变量的值,就需要传址调用

以上就深入理解指针(1)的全部内容,希望看完以上内容你能有所收获,接下来还会继续更新指针的其他内容,未完待续....

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/689767.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Fcos源码训练编译问题

训练fcos代码时出现问题 ImportError: cannot import name ‘_C’ 原因是没有对代码进行编译 运行python setup.py develop --no-deps进行代码编译 编译过程中出现报错&#xff1a; fcos_core/csrc/cuda/ROIAlign_cuda.cu:5:10: fatal error: THC/THC.h: No such file or dire…

计算机服务器中了locked勒索病毒怎么解决,locked勒索病毒解密恢复工具

在网络技术飞速发展的时代&#xff0c;通过网络开展各项工作业务成为众多企业的首选&#xff0c;网络也为企业的生产运营提供了极大便利&#xff0c;大大提升了企业办公效率&#xff0c;但是利用网络避免不了网络威胁的存在&#xff0c;数据安全问题一直是企业关心的主要话题。…

一、精准化测试介绍

精准化测试介绍 一、精准化测试是什么&#xff1f;二、什么是代码插桩&#xff1f;三、两种插桩方式Offine模式&#xff1a;On-the-fly插桩: 四、jacoco覆盖率报告展示五、增量代码覆盖率监控原理六、精准测试系统架构图七、全量与增量覆盖率报告包维度对比八、全量与增量覆盖率…

Java面试题:ReentrantLock

ReentrantLock 可重入锁 可中断 可以设置超时时间 可以让线程在超时后放弃获取锁 可以设置公平锁 可以实现公平锁或非公平锁 支持多个条件变量 让线程在某些条件下进入等待 和synchronized一样都支持重入 //创建锁对象 ReentrantLock Lock new ReentrantLock(); try…

MySQL索引优化(超详细)篇章2--索引调优

目录 1.索引失效状况2.性能分析3.表的索引信息--调整索引顺序4.删除冗余索引5.最佳左前缀法则5.1下面是一个实际的例子来说明这个概念&#xff1a; 6.数据长度和索引长度占用空间比较 1.索引失效状况 MySQL索引失效通常指的是查询语句无法有效地利用索引&#xff0c;而导致全表…

#include《初见C语言之顺序表的增删查改》

目录 一、顺序表 二、顺序表的分类 三、顺序表的实现前期准备 第一步&#xff0c;确定需要的文件 第二步&#xff0c;开始分析 四、顺序表的实现 1.初始化 2.销毁 3.申请空间 4.打印 5.尾插 6.头插 7.尾删 8.头删 9.指定位置之前插入 10.指定位置之前删除 11.…

JavaEE初阶-多线程4

文章目录 一、单例模式1.1 饿汉模式1.2 懒汉模式 二、阻塞队列1.1 生产者消费者模型1.1.1 现实生活举例1.1.2 生产者消费模型的两个优势1.1.2.1 解耦合1.1.2.2 削峰填谷 1.2 阻塞队列代码1.2.1 使用java标准库的阻塞队列实现生产者消费者模型1.2.2 实现自己的阻塞队列 一、单例…

原子学习笔记4——GPIO 应用编程

一、应用层如何操控 GPIO 与 LED 设备一样&#xff0c;GPIO 同样也是通过 sysfs 方式进行操控&#xff0c;进入到/sys/class/gpio 目录下&#xff0c;如下所示&#xff1a; gpiochipX&#xff1a;当前 SoC 所包含的 GPIO 控制器&#xff0c;我们知道 I.MX6UL/I.MX6ULL 一共包…

探索Linux:深入理解各种指令与用法

文章目录 cp指令mv指令cat指令more指令less指令head指令tail指令与时间相关的指令date指令 cal指令find指令grep指令zip/unzip指令总结 上一个Linux文章我们介绍了大部分指令&#xff0c;这节我们将继续介绍Linux的指令和用法。 cp指令 功能&#xff1a;复制文件或者目录 语法…

鸿蒙ArkUI:【编程范式:命令式->声明式】

命令式 简单讲就是需要开发用代码一步一步进行布局&#xff0c;这个过程需要开发全程参与。 开发前请熟悉鸿蒙开发指导文档&#xff1a;gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 Objective-C ObjectiveC 复制代码 UIView *cardView …

用websocket实现一个简单的im聊天功能

WebSocket前后端建立以及使用-CSDN博客 经过我上一篇的基本理解websocket的建立以及使用后&#xff0c;这篇就写一个简单的demo 实现im聊天 首先就是后端代码&#xff0c;详细解释我都放到了每一句的代码解析了&#xff0c;文章最后我会说怎么运行流程 放置后端代码 packa…

17.Blender RC大佬EEVEE皮肤节点预设导入

如何添加节点预设 在底下的左下角打开Geometry Node Editor 选中正方体&#xff0c;点击新建 当鼠标指针在两个模块之间&#xff0c;是十字的样子时 可以拖出一个新的板块 然后打开文件浏览器 找到节点预设然后拖入到底下的节点编辑界面就可以了或者是blend文件&#xf…