Imitation Learning学习记录(理论例程)

前言

最近还是衔接着之前的学习记录,这次打算开始学习模仿学习的相关原理,参考的开源资料为

TeaPearce/Counter-Strike_Behavioural_Cloning: IEEE CoG & NeurIPS workshop paper ‘Counter-Strike Deathmatch with Large-Scale Behavioural Cloning’ (github.com)
[2104.04258] Counter-Strike Deathmatch with Large-Scale Behavioural Cloning (arxiv.org)

简单来说,行为克隆就是利用已有的人为示范数据作为输入来训练出一个策略,策略就会输出指定的动作,然而,行为克隆只能学习到专家的行为,而无法进行探索和自主学习。这意味着行为克隆的性能受限于专家的行为水平,并且可能无法适应新的、未在专家演示中出现过的情况。通过引入奖励函数,可以在行为克隆中加入一定的探索和自主学习能力。奖励函数可以根据当前状态和采取的动作来评估行为的好坏,并为模型提供反馈信号。通过优化奖励函数,可以使模型学习到更好的策略,并且能够适应新的情况和环境。奖励函数在行为克隆中起到了指导和调整模型学习的作用。其中,文章用到的例程的网络结构如下

请添加图片描述

本文打算从数据获取、模型训练、效果展示三个部分展开介绍

数据获取

在这个过程中作者使用了Game State Integration(GSI)技术来获取在线数据。通过GSI,作者可以从游戏中获取实时的游戏状态信息,包括玩家、队伍、武器、位置等各种数据。具体来说,作者可能使用了Valve提供的GSI接口来获取游戏状态信息。这些信息可以用于后续的行为克隆和分析工作。

这个过程中的核心代码如下

# now find the requried process and where two modules (dll files) are in RAM  
hwin_csgo = win32gui.FindWindow(0, ('counter-Strike: Global Offensive'))  
if(hwin_csgo):  pid=win32process.GetWindowThreadProcessId(hwin_csgo)  handle = pymem.Pymem()  handle.open_process_from_id(pid[1])  csgo_entry = handle.process_base  
else:  print('CSGO wasnt found')  os.system('pause')  sys.exit()  # now find two dll files needed  
list_of_modules=handle.list_modules()  
while(list_of_modules!=None):  tmp=next(list_of_modules)  # used to be client_panorama.dll, moved to client.dll during 2020  if(tmp.name=="client.dll"):  print('found client.dll')  off_clientdll=tmp.lpBaseOfDll  break  
list_of_modules=handle.list_modules()  
while(list_of_modules!=None):  tmp=next(list_of_modules)  if(tmp.name=="engine.dll"):  print('found engine.dll')  off_enginedll=tmp.lpBaseOfDll  break

大致逻辑为:

  1. 查找CSGO进程:

    • 使用win32gui.FindWindow查找名为’counter-Strike: Global Offensive’的窗口句柄。
    • 如果找到窗口句柄,则通过win32process.GetWindowThreadProcessId获取与该窗口关联的进程ID。
    • 使用pymem.Pymem()创建一个进程内存访问对象,并通过open_process_from_id方法打开该进程。
    • 如果CSGO进程未找到,则打印消息并退出程序。
  2. 查找client.dll和engine.dll:

    • 使用handle.list_modules()获取进程中的所有模块列表。
    • 遍历模块列表,查找名为"client.dll"的模块,并获取动态链接库的基地址(lpBaseOfDll)。
    • 注意:这里使用了两次handle.list_modules()来分别查找两个DLL文件,但实际上你可以只调用一次并将结果存储在列表中,然后遍历这个列表来查找两个DLL。
    • 类似地,代码还查找名为"engine.dll"的模块,并获取其基地址。

找到窗口和动态链接库以后就可以开始录像并通过GSI或者RAM来访问键位等游戏信息,得到的数据类型大致为

  • frame_i_x: 图像信息
  • frame_i_xaux: 包含在前一个时间步骤中应用的动作,以及血量、弹药和团队。用于更好地帮助智能体寻找敌人以及适应当前情况
  • frame_i_y: 对应键盘以及鼠标的动作
  • frame_i_helperarr: 在格式kill_flag, death_flag中,每个变量都是二元变量,例如[[1,0]],意味着玩家击杀一次,但在该时间步内没有死亡

其中,具体的键位信息如下:

# how many slots were used for each action type?  
n_keys = 11 # number of keyboard outputs, w,s,a,d,space,ctrl,shift,1,2,3,r  
n_clicks = 2 # number of mouse buttons, left, right  
n_mouse_x = len(mouse_x_possibles) # number of outputs on mouse x axis  
n_mouse_y = len(mouse_y_possibles) # number of outputs on mouse y axis  
n_extras = 3 # number of extra aux inputs, eg health, ammo, team. others could be weapon, kills, deaths  
aux_input_length = n_keys+n_clicks+1+1+n_extras # aux uses continuous input for mouse this is multiplied by ACTIONS_PREV elsewhere

一个帧所包含的具体信息值如下:

请添加图片描述
请添加图片描述

模型训练

网络结构

输入先进入一个预训练好的EfficientNetB0模型,该模型在ImageNet数据集上进行了训练。并加上了时间序列信息,接下来将提取好的特征输入进一个带有时序信息的ConvLSTM网络

base_model = EfficientNetB0(weights='imagenet',input_shape=(input_shape[1:]),include_top=False,drop_connect_rate=0.2)
if 'drop' in model_name:  if 'big' in model_name:  x = ConvLSTM2D(filters=512,kernel_size=(3,3),stateful=False,return_sequences=True,dropout=0.5, recurrent_dropout=0.5)(x)  else:  x = ConvLSTM2D(filters=256,kernel_size=(3,3),stateful=False,return_sequences=True,dropout=0.5, recurrent_dropout=0.5)(x)

输出的信息为

# set up outputs, sepearate outputs will allow seperate losses to be applied  
output_1 = TimeDistributed(Dense(n_keys, activation='sigmoid'))(dense_5)  
output_2 = TimeDistributed(Dense(n_clicks, activation='sigmoid'))(dense_5)  
output_3 = TimeDistributed(Dense(n_mouse_x, activation='softmax'))(dense_5) # softmax since mouse is mutually exclusive  
output_4 = TimeDistributed(Dense(n_mouse_y, activation='softmax'))(dense_5)   
output_5 = TimeDistributed(Dense(1, activation='linear'))(dense_5)   
# output_all = concatenate([output_1,output_2,output_3,output_4], axis=-1)  
output_all = concatenate([output_1,output_2,output_3,output_4,output_5], axis=-1)

损失函数

  1. 键盘按键损失(loss1a, loss1b, loss1c, loss1d
    • loss1a:计算 WASD 键(通常用于游戏中的移动)的二进制交叉熵损失。
    • loss1b:计算空格键的二进制交叉熵损失。
    • loss1c:计算重新加载键(如游戏中的“R”键)的二进制交叉熵损失。
    • loss1d(注释掉的部分):原本可能用于计算其他键盘按键的损失,但在提供的代码中,它被重新定义为武器切换键(1, 2, 3)的损失。
  2. 鼠标点击损失(loss2a, loss2b
    • loss2a:计算鼠标左键点击的二进制交叉熵损失。
    • loss2b:计算鼠标右键点击的二进制交叉熵损失(如果n_clicks大于1的话)。
  3. 鼠标移动损失(loss3, loss4
    • loss3:计算鼠标在 X 轴上的移动损失。由于鼠标移动是互斥的(即鼠标不能同时处于多个位置),因此使用了分类交叉熵损失(categorical_crossentropy)。
    • loss4:计算鼠标在 Y 轴上的移动损失,同样使用了分类交叉熵损失。

除此之外,还有一个loss_crit损失函数,

loss_crit = 10*losses.MSE(y_true[:,:-1,n_keys+n_clicks+n_mouse_x+n_mouse_y:n_keys+n_clicks+n_mouse_x+n_mouse_y+1]  + GAMMA*y_pred[:,1:,n_keys+n_clicks+n_mouse_x+n_mouse_y:n_keys+n_clicks+n_mouse_x+n_mouse_y+1]  ,y_pred[:,:-1,n_keys+n_clicks+n_mouse_x+n_mouse_y:n_keys+n_clicks+n_mouse_x+n_mouse_y+1])

这是一个基于时序差分(Temporal Difference, TD)的均方误差(Mean Squared Error, MSE)损失函数,用于强化学习中的值函数逼近。它计算了当前时间步的奖励(或值)与下一个时间步的预测奖励(或值)之和(经过折扣因子 GAMMA 调整后)与当前时间步的预测奖励(或值)之间的均方误差。这种损失函数允许神经网络学习如何根据当前状态和环境信息来预测未来的奖励或值,从而优化策略或值函数。在这个特定的实现中,损失还乘以了一个系数(如10),可能是为了调整该损失在总损失中的相对权重。

奖励函数如下,奖励为 R(杀敌数,死亡数,子弹数)

reward_i = kill_i - 0.5*dead_i - 0.01*shoot_i # this is reward function  
y[i,j,-2:] = (reward_i,0.) # 0. is a placeholder for original advantage

效果展示

通过e2e.yml文件配置虚拟环境,更改了游戏内的窗口分辨率,设置了一些其他的参数,运行dm_run_agent.py以后在自己的电脑上成功复现

请添加图片描述

总结

本次基于Counter-Strike Deathmatch with Large-Scale Behavioural Cloning这个开源项目系统地学习了一下行为克隆的基本流程,从数据采集、模型训练以及损失函数的定义到最终复现,拓宽了我对RL的认知,在日后也能够更好地迁移到Robotic,逻辑如下:

  1. 数据收集:首先,需要收集人类专家在特定任务中的行为数据。这些数据通常包括机器人所处的状态(如位置、姿态、环境信息等)以及对应的人类专家在该状态下所采取的动作(如移动方向、操作指令等)。这些数据构成了行为克隆算法的训练集。
  2. 模型训练:使用收集到的数据训练一个模型,如神经网络模型。这个模型将学习从状态到动作的映射关系,即根据机器人当前的状态预测应该执行的动作。在训练过程中,模型会不断优化其参数,以最小化预测动作与真实动作之间的差异。
  3. 模型部署:训练好的模型可以部署到机器人上,用于指导机器人的行为。当机器人遇到新的状态时,它会将当前状态输入到模型中,模型会输出一个预测的动作。机器人将根据这个预测的动作来执行相应的操作。
  4. 反馈与调整:在机器人执行动作的过程中,可以通过收集反馈信息来进一步调整模型。例如,可以观察机器人执行动作后的效果,如果效果不理想,则可以收集新的数据并重新训练模型,以提高其性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/692178.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

强化学习在一致性模型中的应用与实验验证

在人工智能领域,文本到图像的生成任务一直是研究的热点。近年来,扩散模型和一致性模型因其在图像生成中的卓越性能而受到广泛关注。然而,这些模型在生成速度和微调灵活性上存在局限。为了解决这些问题,康奈尔大学的研究团队提出了…

LabVIEW的MEMS电容式压力传感器测试系统

LabVIEW的MEMS电容式压力传感器测试系统 针对传统微惯性测量单元(MIMU)标定方法存在的过程繁琐、标定周期长及设备复杂等问题,提出了一种基于LabVIEW软件的MIMU误差参数快速标定方法。通过软件上位机控制小型三轴转台,配合卡尔曼滤波器技术,…

表的创建与操作表

1. 创建表 创建表有两种方式 : 一种是白手起家自己添,一种是富二代直接继承. 2. 创建方式1 (1). 必须具备条件 CREATE TABLE权限存储空间 (2). 语法格式 CREATE TABLE IF NOT EXISTS 表名(字段1, 数据类型 [约束条件] [默认值],字段2, 数据类型 [约束条件] [默…

【Java】:方法重写、动态绑定和多态

目录 一个生动形象的例子 场景设定 1. 方法重写(Method Overriding) 2. 动态绑定(Dynamic Binding) 3. 多态(Polymorphism) 归纳关系: 重写 概念 条件 重写的示例 重载与重写的区别 …

2023.5.12 第43周周报

学习时间:2023.5.5-2023.5.12 学习内容: 1、answer question: img: 看到有论文说应该让图像和文本的潜在嵌入具有相似和合理的数值范围【-2,2】 调试发现模型的文本图像的潜在嵌入虽然符合,但相差较大。 在将文本和…

C++/Qt 小知识记录6

工作中遇到的一些小问题,总结的小知识记录:C/Qt 小知识6 dumpbin工具查看库导出符号OSGEarth使用编出的protobuf库,报错问题解决VS2022使用cpl模板后,提示会乱码的修改设置QProcess调用cmd.exe执行脚本QPainterPath对线段描边处理…

Linux基础命令(续)

17,wc命令 作用:统计行数、单词数、字符个数 格式: wc 选项 文件 wc passwd 26 36 1159 passwd26:行数 36:单词数 1159:字符数 passwd:文件名wc autofs.conf 426 2604 15137 autofs.conf426…

第⼀个SpringBoot程序

Spring Boot介绍 Spring让Java程序更加快速, 简单和安全. Spring对于速度、简单性和⽣产⼒的关注使其成为 世界上最流⾏的Java框架。 Spring Boot 的诞⽣是为了简化 Spring 项目而诞生的 创建Spring Boot项目 File->New Project->Spring Initializr 选择2.多的版本 创建…

【大数据】HDFS、HBase操作教程(含指令和JAVA API)

目录 1.前言 2.HDFS 2.1.指令操作 2.2.JAVA API 3.HBase 3.1.指令操作 3.2.JAVA API 1.前言 本文是作者大数据专栏系列的其中一篇,前文中已经详细聊过分布式文件系统HDFS和分布式数据库HBase了,本文将会是它们的实操讲解。 HDFS相关前文&#x…

spsr 的恢复出错,导致 thumb 指令集的 it 条件运行指令运行异常,清晰的调试思路帮助快速解决问题

记一次调试过程 这是一个在 arm 架构上的 RTOS 上的调试过程。问题现象为使用 thumb 指令集的 libgcc 库的情况下,浮点运算随机出错。经过一番追踪调试,逐步缩小问题范围,最后定位问题,成功解决。 场景 在某款的国产 RTOS 上&a…

DOM 文档对象模型

一、DOM简介 1、什么是DOM DOM 文档对象模型简称,是W3C组织推荐的处理可扩展标记语言的标准编程接口 W3C已经定义了一系列的DOM接口,通过这些接口可以改变网页的内容、结构、样式 2、DOM树 DOM把以上内容都看做是对象 二、获取元素 获取页面元素&am…

电子资源|基于SSM+vue的电子资源管理系统(源码+数据库+文档)​

电子资源管理系统 目录 基于SSMvue的电子资源管理系统 一、前言 二、系统设计 三、系统功能设计 1系统功能模块 2管理员功能模块 5.2.1管理员功能模块 5.2.2用户功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&am…