Stable Diffusion WebUI 从零基础到入门

143e5c0474fcc925328b46b7cfcb1c32.gif

本文主要介绍Stable Diffusion WebUI的实际操作方法,涵盖prompt推导、lora模型、vae模型和controlNet应用等内容,并给出了可操作的文生图、图生图实战示例。适合对Stable Diffusion感兴趣,但又对Stable Diffusion WebUI使用感到困惑的同学,希望通过本文能够降低大家对Stable Diffusion WebUI的学习成本,更快速的体验到AIGC图像生成的魅力。

eeb0e23c36195e6f924f089776f96950.png

引言

Stable Diffusion (简称sd)是一个深度学习的文本到图像生成模型, Stable Diffusion WebUI是对Stable Diffusion模型进行封装,提供可操作界面的工具软件。Stable Diffusion WebUI上加载的模型,是在Stable Diffusion 基座模型基础上,为了获得在某种风格上的更高质量的生成效果,而进行再次训练后产生的模型。目前 Stable Diffusion  1.5版本是社区内最盛行的基座模型。

  安装

sd web-ui的安装请参考:https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs



sd web-ui使用了gradio组件包,gradio在配置share=True时,会创建frpc隧道并链接到aws,详情可参考(https://www.gradio.app/guides/sharing-your-app),因此在sd web-ui应用启动时,请根据自身安全生产或隐私保护要求,考虑是否禁止开启share=True配置,或删除frpc客户端。

  模型

https://civitai.com/是一个开源的sd模型社区,提供了丰富的模型免费下载和使用。在此简述一下模型的分类,有助于提高对sd web-ui的使用。sd模型训练方法主要分为四类:Dreambooth, LoRA,Textual Inversion,Hypernetwork。

  1. Dreambooth:在sd基座模型的基础上,通过 Dreambooth 训练方式得到的大模型, 是一个完整的新模型,训练速度较慢,生成模型文件较大,一般几个G,模型文件格式为 safetensors 或 ckpt。特点是出图效果好,在某些艺术风格上有明显的提升。如下图所示,sd web-ui中该类模型可以在这里进行选择。

    72b9c1b72375ee586d1b36f87057806b.png

  2. LoRA: 一种轻量化的模型微调训练方法,在原有大模型的基础上对该模型进行微调,用于输出固定特征的人或事物。特点是对于特定风格的图产出效果好,训练速度快,模型文件小,一般几十到一百多 MB,不能独立使用,需要搭配原有大模型一起使用。sd web-ui提供了lora模型插件,以及使用lora模型的方式,具体操作可见本文的 "操作流程->lora模型" 。

  3. Textual Inversion:一种使用文本提示和对应的风格图片来微调训练模型的方法,文本提示一般为特殊的单词,模型训练完成后,可以在text prompts中使用这些单词,来实现对模型生成图片风格和细节的控制,需要搭配原有的大模型一起使用。

  4. Hypernetwork:与LoRA类似的微调训练大模型的方法,需要搭配原有的大模型一起使用。

28ae693cb6d310b5cf8bfde911ca0819.png

操作流程

  prompt推导

  1. 在sd中上传一张图片

  2. 反向推导关键词,有两个模型CLIP和DeepBooru,以图1为例:

8f15663cb0b8f1532aec6e80caee7c06.png

图1: iphone 14 pro max 原相机拍摄的高清照片

使用CLIP进行prompt反推的结果:

a baby is laying on a blanket surrounded by balloons and balls in the air and a cake with a name on it, Bian Jingzhao, phuoc quan, a colorized photo, dada

使用DeepBooru进行prompt反推的结果:

1boy, ball, balloon, bubble_blowing, chewing_gum, hat, holding_balloon, male_focus, military, military_uniform, open_mouth, orb, solo, uniform, yin_yang

CLIP反推结果是一个句子,DeepBooru的反推结果是关键词。

可以修改正向prompt,也可以添加反向prompt,反向prompt用于限制模型在生产图片时不添加反向prompt中出现的元素。反向prompt不是必须的,可以不填。

  lora模型

lora模型对大模型生成图的风格和质量有很强的干预或增强作用,但是lora模型需要与配套的大模型一起使用,不能单独使用。在sd-webui中使用lora模型的方式主要有两种:

  • 方法一

安装additional-network插件,插件的github地址:https://github.com/kohya-ss/sd-webui-additional-networks,在sd-webui上可以在扩展中直接下载安装。该插件仅支持使用sd-script脚本训练的lora模型,目前https://civitai.com/上绝大多数的开源lora模型都是基于此脚本训练的,因此该插件支持绝大多数的lora模型。下载的lora模型需要放到

*/stable-diffusion-webui/extensions/sd-webui-additional-networks/models/lora

路径下, 新增模型需要重启sd-webui,插件和模型正确加载后,会在webui操作界面的左下角中出现“可选附加网络(LoRA插件)” 。在生成图片时触发lora,需要在插件中选中lora模型,并在正向提示词中加入Trigger Words。下图中选中的lora模型为blinndbox_v1_mix, trigger words为full body,chibi, 每个lora模型有自己独有的Trigger Words,在模型的简介中会注明。

fc3c26d16ed4d53f49d542426b3e728e.png

如果插件在点击安装后没有反应,或者提示因为Flag引起的错误,是因为webui启动时允许扩展插件的设置配置为禁止,需要在webui启动时添加启动参数:--enable-insecure-extension-access

./webui.sh --xformers --enable-insecure-extension-access
  • 方法二

不使用additional-network插件,使用sd-webui默认支持的lora模型使用方式,需要将lora模型放到

*/stable-diffusion-webui/models/Lora

目录下,重新启动sd-webui即可自动载入模型。

在正向提示词中加入lora模型启用语句,生产图片时即可触发lora模型:

e42f73a1d0927302588104b5eed8e56d.png

web-ui提供了自动填充lora提示语句的功能,点击如图所示的图标,可以打开lora模型列表,然后点击模型区域,语句会自动填充到正向提示词区域:

92604da6ff2598d11821cbd5d7c24f62.png

以上两种方式,选用其中任意一种均能使lora模型在内容生产中生效,两种方式同时使用也不会引起问题。

  ControlNet

controlNet通过支持额外的输入条件,试图控制预训练的大模型,如Stable Diffusion。单纯的文本控制方式令内容的生产就像碰运气抽卡,结果无法控制且不容易达到预期效果,controlNet的出现使stable diffusion大模型的内容生成进入可控时期,让创作变得可控使得AIGC在工业应用上更进一步。

  • 安装controlNet

在sd-webui上,点击扩展,进入插件安装页面,找到controlNet插件,点击install即可完成插件安装。

6185919ac3f16d18fb478030ceb71d72.png

下载开源的controlnet模型

下载地址:https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main

一个模型由两个文件组成: .pth 和 .yaml,需要同时下载。文件名中"V11"后面的字母,p:表示可以使用,e:表示还在试验中,u:表示未完成。下载好的模型放在如下目录,重启sd-webui 即可完成controlnet模型加载。

*\stable-diffusion-webui\extensions\sd-webui-controlnet\models

  图生图示例

  • 模型选择

1、stable diffusion大模型选用:revAnimated_v11 (https://civitai.com/models/7371?modelVersionId=46846)

2、lora模型选用blind_box_v1_mix (https://civitai.com/models/25995?modelVersionId=32988)

3、采样方法Euler a

4、源图片使用 图1,使用DeepBooru模型进行正向prompts生成, 添加revAnimated_v11的特定prompts, 删除一些正向prompts,添加反向prompts,最后使用的prompt如下所示。

正向:

(masterpiece),(best quality), (full body:1.2), (beautiful detailed eyes), 1boy, hat, male, open_mouth, smile, cloud, solo, full body, chibi, military_uniform, <lora:blindbox_v1_mix:1>

反向:

(low quality:1.3), (worst quality:1.3)

生成的图片为:

29fdaaac3b31b46d313fbc8e9a216691.jpeg

图1:原图片

2fa3bc952baf7942005f065423565af4.png

图2:sd生成图片

5、保持生成图片的条件不变,添加ControlNet模型,选择Openpose,control mode选择 balance ,生成的图片如下所示,生成的人物动作因为Openpose的作用被约束了,与原图像保持的更为相似。

559911c06acb9684d04793ef5b06d5ac.png

图3:sd生成图片(添加openpose)

dd831f5c06f8afa377a3f145162f7105.png

图4: openpose生成的图片

  文生图示例

  • 模型选择

  1. stable diffusion大模型选用:revAnimated_v11 (https://civitai.com/models/7371?modelVersionId=46846)

  2. lora模型选用blind_box_v1_mix (https://civitai.com/models/25995?modelVersionId=32988)

  3. 采样方法Euler a

示例1

提示词

正向:

(masterpiece),(best quality),(ultra-detailed), (full body:1.2), 1girl, youth, dynamic, smile, palace,tang dynasty, shirt, long hair, blurry, black hair, blush stickers, black hair, (beautiful detailed face), (beautiful detailed eyes), <lora:blindbox_v1_mix:1>, full body, chibi

反向:

(low quality:1.3), (worst quality:1.3)

生成的图片为:

69d0db04c873ed88181305fe921b658c.png

图5: 文生图实例1

示例2

提示词

正向:

(masterpiece),(best quality),(ultra-detailed), (full body:1.2), 1girl,chibi,sex, smile, open mouth, flower, outdoors, beret, jk, blush, tree, :3, shirt, short hair, cherry blossoms, blurry, brown hair, blush stickers, long sleeves, bangs, black hair, pink flower, (beautiful detailed face), (beautiful detailed eyes), <lora:blindbox_v1_mix:1>,

反向:

(low quality:1.3), (worst quality:1.3)

生成图片为:

cac55344623ebfa70e034cb50a6c2abe.png

图6: 文生图实例2

提示词解析

  1. (masterpiece),(best quality),(ultra-detailed), (full body:1.2), (beautiful detailed face), (beautiful detailed eyes) 这些带()的词为revAnimated_v11 模型配套prompts,用于提高图片的生成质量。

  2. <lora:blindbox_v1_mix:1> 是触发 blind_box_v1_mix 模型的 prompt。

  3. full body, chibi 为 blind_box_v1_mix 模型的 trigger words。

  4. 剩下的prompts为图片内容的描述。

  5. revAnimated_v11 模型对prompt的顺序是敏感的,排在前面的提示词比排在后面的prompt对结果的影响更大。

  VAE

在sd的实际使用中,vae模型起到滤镜和微调的作用,有些sd模型是自带vae的,并不需要单独挂载vae。与模型配套的vae的模型,通常会在模型的发布页面会附带vae的下载链接。

  • 模型的安装

下载vae模型到sd web-ui的如下目录,重启sd web-ui,即可自动完成vae模型加载。

/stable-diffusion-webui/models/VAE

如下图所示,在sd web-ui上可以切换vae模型。

374c1eebf411e9888fdb8a37e792bd82.png

如果we-ui上看不到此选择框,则到设置-> 用户界面-> 快捷设置列表 添加配置 "sd_vae",如下所示:

93f1d6142c091ce4525a9b8f9f8d677d.png

  • 效果

在保持图6生成条件不变的基础上,附加Blessed2(https://huggingface.co/NoCrypt/blessed_vae/blob/main/blessed2.vae.pt)模型,图片的颜色和对比度有了明显的变化。

224788fa718edebbc871737318bba789.png

图7: 添加vae模型前

e28713ed9ee3f3a1ea54aa775a3c4a2c.png

图8:添加vae模型后图片的饱和度和对比度都有提升

f28929f2d7d40123980923cc8766ec08.png

结束语

  1. sd web-ui的学习曲线比较陡峭,具有一定的图像处理领域知识能够帮助用户更好的选择和组合模型。

  2. 零基础小白用户容易出现随便选择模型,胡乱组合,对着sd web-ui界面进行一系列操作后,出图效果和预期完全不符的情况,建议先了解每个模型的特点后再根据实际目标进行选择。

  3. sd是开源的,sd web-ui是一个工具箱,不是一个商业产品,社区中有很多效果很棒的模型,出图的上限很高,但下限也很低,开源不代表没有成本,因为sd we-ui部署要求较高的硬件配置。要节省学习成本,较为稳定的出图效果,简单便捷的用户体验,没有硬件配置要求,midjourney 是当前的首选,但需要支付订阅费。

0ee2460d5265df6083f5e18eb8f1896d.png

团队介绍

我们是大淘宝FC技术智能策略团队,负责手机天猫搜索、推荐、拍立享等业务研发和技术平台建设,综合运用搜推算法、机器视觉、AIGC等前沿技术,致力于依靠技术的进步支持场景的提效和产品的创新,为用户带来更好的购物体验。

¤ 拓展阅读 ¤

3DXR技术 | 终端技术 | 音视频技术

服务端技术 | 技术质量 | 数据算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/69468.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Apollo】推动创新:探索阿波罗自动驾驶的进步(含安装 Apollo的详细教程)

前言 Apollo (阿波罗)是一个开放的、完整的、安全的平台&#xff0c;将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统&#xff0c;快速搭建一套属于自己的自动驾驶系统。 开放能力、共享资源、加速创新、持续共赢是 Apollo 开放平台的口号。百度把自己所拥有的强大、…

UE4/UE5 照明构建失败 “Lightmass crashed”解决“数组索引越界”

在构建全局光照时,经常会出现“Lightmass crashed”的错误,导致光照构建失败。本文将分析这一问题的原因,并给出解决建议。 UE4 版本4.26 报错如下: <None> === Lightmass crashed: === Assertion failed: (Index >= 0) & (Index < ArrayNum) [File:d:\build…

根据二叉树创建字符串

题目:给你二叉树的根节点 root &#xff0c;请你采用前序遍历的方式&#xff0c;将二叉树转化为一个由括号和整数组成的字符串&#xff0c;返回构造出的字符串。 空节点使用一对空括号对 "()" 表示&#xff0c;转化后需要省略所有不影响字符串与原始二叉树之间的一对…

Linux查看GPU显卡/CPU内存/硬盘信息

显卡信息命令/CPU内存/硬盘 1.显卡2、CPU内存3、硬盘 1.显卡 nvidia-smi nvidia-smi&#xff08;显示一次当前GPU占用情况&#xff09; nvidia-smi -l&#xff08;每秒刷新一次并显示&#xff09; watch -n 5 nvidia-smi &#xff08;其中&#xff0c;5表示每隔6秒刷新一次终端…

达梦数据库(dm8) Centos7 高可用集群

国产数据库-达梦 一、环境详情二、Centos7 参数优化&#xff08;所有节点&#xff09;三、创建用户&#xff08;所有节点&#xff09;四、开始安装&#xff08;所有节点&#xff09;五、服务注册启动 当前安装&#xff1a;在指定版本环境下 测试&#xff0c;仅供参考 官网描述&…

Flutter:简单搞一个内容高亮

内容高亮并不陌生&#xff0c;特别是在搜索内容页面&#xff0c;可以说四处可见&#xff0c;就拿掘金这个应用而言&#xff0c;针对某一个关键字&#xff0c;我们搜索之后&#xff0c;与关键字相同的内容&#xff0c;则会高亮展示&#xff0c;如下图所示&#xff1a; 如上的效果…

完美解决Github提交PR后报错:File is not gofumpt-ed (gofumpt)

问题阐述 最近在Github上提交PR后&#xff0c;遇到了这么一个问题&#xff1a;golangci-lint运行失败&#xff0c;具体原因是File is not gofumpt-ed (gofumpt)。 名词解释 golangci-lint&#xff1a; golangci-lint 是Go语言社区中常用的代码质量检查工具&#xff0c;它可以…

C#,数值计算——抛物线插值与Brent方法(Parabolic Interpolation and Brent‘s Method)的计算方法与源程序

using System; namespace Legalsoft.Truffer { /// <summary> /// 抛物线插值与Brent方法 /// Parabolic Interpolation and Brents Method /// </summary> public class Brent : Bracketmethod { public double xmin { get; set…

数据统计与可视化的Dash应用程序

在数据分析和可视化领域&#xff0c;Dash是一个强大的工具&#xff0c;它结合了Python中的数据处理库&#xff08;如pandas&#xff09;和交互式可视化库&#xff08;如Plotly&#xff09;以及Web应用程序开发框架。本文将介绍如何使用Dash创建一个简单的数据统计和可视化应用程…

Mysql - 配置Mysql主从复制-keepalived高可用-读写分离集群

目录 高可用&#xff1a; 为什么需要高可用呢&#xff1f; 高可用的主要作用&#xff1a; keepalived是什么&#xff1f;它用在哪里&#xff1f; 什么是VRRP协议&#xff0c;它的作用是什么&#xff1f; 搭建一个基于keepalived的高可用Mysql主从复制读写分离集群 一、项…

HTML5的介绍和基本框架

目录 HTML5 HTML5介绍 HTML5的DOCTYPE声明 HTML5基本骨架 html标签 head标签 body标签 title标签 meta标签 在vscode中写出第一个小框架 HTML5 HTML5介绍 HTML5是用来描述网页的一种语言&#xff0c;被称为超文本标记语言。用HTML5编写的文件&#xff0c;后缀以.ht…

ubuntu网络管理

主机-ip&#xff0c;service—port 分别查看/etc/hosts&#xff0c;/etc/host.conf&#xff1b;/etc/services&#xff0c;/etc/resolv.conf&#xff1b; 内核更新——linux-image-generic 6.2.0-24.24 非常抱歉&#xff0c;我误解了你的问题。如果你想更新已安装的内核版本…