Python学习笔记第五十七天(Pandas 数据清洗)

Python学习笔记第五十七天

  • Pandas 数据清洗
    • Pandas 清洗空值
      • isnull()
    • Pandas替换单元格
      • mean()
      • median()
      • mode()
    • Pandas 清洗格式错误数据
    • Pandas 清洗错误数据
    • Pandas 清洗重复数据
      • duplicated()
      • drop_duplicates()
  • 后记

Pandas 数据清洗

数据清洗是对一些没有用的数据进行处理的过程。

很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。

在这个教程中,我们将利用 Pandas包来进行数据清洗。
本文使用到的测试数据 property-data.csv 如下:

在这里插入图片描述

上表包含了四种空数据:

  • n/a
  • NA
  • na

Pandas 清洗空值

如果我们要删除包含空字段的行,可以使用 dropna() 方法,语法格式如下:

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数说明:

  • axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。
  • how:默认为 ‘any’ 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how=‘all’ 一行(或列)都是 NA 才去掉这整行。
  • thresh:设置需要多少非空值的数据才可以保留下来的。
  • subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。
  • inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改的是源数据。

isnull()

我们可以通过 isnull() 判断各个单元格是否为空。

# 实例 1
import pandas as pd
df = pd.read_csv('property-data.csv')
print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())

以上例子中Pandas 把 n/a 和 NA 当作空数据,na 不是空数据,不符合我们要求,我们可以指定空数据类型:

# 实例 2
import pandas as pd
missing_values = ["n/a", "na", "--"]
df = pd.read_csv('property-data.csv', na_values = missing_values)
print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())

使用 pd.read_csv 函数读取了一个名为 ‘property-data.csv’ 的CSV文件,并将其存储在 df 变量中,df.dropna() 这行代码从原始DataFrame(在变量 df 中)中删除了包含空数据的行,将新的不含空数据行DataFrame转换为字符串并打印出来。

# 实例 3
import pandas as pd
df = pd.read_csv('property-data.csv')
new_df = df.dropna()
print(new_df.to_string())

注意:默认情况下,dropna() 方法返回一个新的 DataFrame,不会修改源数据。
如果你的 ‘property-data.csv’ 文件中有一些行包含空数据(例如,某个或多个列的值为空),那么这些行将会被删除,新的DataFrame(new_df)将不包含这些行。
需要注意的是,dropna() 默认会删除包含至少一个NaN值的行。如果你想删除所有NaN值并且只保留没有缺失值的行,你可以使用 dropna(how=‘all’)。
此外,你还可以通过设置 axis 参数来指定是行还是列应该被删除。例如,df.dropna(axis=1) 将删除包含空数据的列。

如果你要修改源数据 DataFrame, 可以使用 inplace = True 参数

# 实例 4
import pandas as pd
df = pd.read_csv('property-data.csv')
df.dropna(inplace = True)
print(df.to_string())

也可以移除指定列有空值的行

# 实例 5
import pandas as pd
df = pd.read_csv('property-data.csv')
# 移除 ST_NUM 列中字段值为空的行
df.dropna(subset=['ST_NUM'], inplace = True)
print(df.to_string())

也可以 fillna() 方法来替换一些空字段

# 实例 6
import pandas as pd
df = pd.read_csv('property-data.csv')
# 使用 12345 替换空字段
df.fillna(12345, inplace = True)
print(df.to_string())

也可以指定某一个列来替换数据:

# 实例 7
import pandas as pd
df = pd.read_csv('property-data.csv')
# 使用 12345 替换 PID 为空数据:
df['PID'].fillna(12345, inplace = True)
print(df.to_string())

Pandas替换单元格

替换空单元格的常用方法是计算列的均值、中位数值或众数。

Pandas使用 mean()、median() 和 mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)。

mean()

使用 mean() 方法计算列的均值并替换空单元格

# 实例 8
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].mean()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())

median()

使用 median() 方法计算列的中位数并替换空单元格

# 实例 9
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].median()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())

mode()

使用 mode() 方法计算列的众数并替换空单元格

# 实例 10
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].mode()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())

Pandas 清洗格式错误数据

数据格式错误的单元格会使数据分析变得困难,甚至不可能。

我们可以通过包含空单元格的行,或者将列中的所有单元格转换为相同格式的数据。

以下实例会格式化日期:

# 实例 11
import pandas as pd
# 第三个日期格式错误
data = {"Date": ['2020/12/01', '2020/12/02' , '20201226'],"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
df['Date'] = pd.to_datetime(df['Date'])
print(df.to_string())

Pandas 清洗错误数据

数据错误也是很常见的情况,我们可以对错误的数据进行替换或移除。

以下实例会替换错误年龄的数据:

# 实例 12
import pandas as pd
person = {"name": ['Google', 'Baidu' , 'Taobao'],"age": [50, 40, 12345]    # 12345 年龄数据是错误的
}
df = pd.DataFrame(person)
df.loc[2, 'age'] = 30 # 修改数据
print(df.to_string())

也可以设置条件语句,将 age 大于 120 的设置为 120

# 实例 13
import pandas as pd
person = {"name": ['Google', 'Baidu' , 'Taobao'],"age": [50, 200, 12345]    
}
df = pd.DataFrame(person)
for x in df.index:if df.loc[x, "age"] > 120:df.loc[x, "age"] = 120
print(df.to_string())

也可以将错误数据的行删除,将 age 大于 120 的删除

# 实例 14
import pandas as pd
person = {"name": ['Google', 'Baidu' , 'Taobao'],"age": [50, 40, 12345]    # 12345 年龄数据是错误的
}
df = pd.DataFrame(person)
for x in df.index:if df.loc[x, "age"] > 120:df.drop(x, inplace = True)
print(df.to_string())

Pandas 清洗重复数据

如果我们要清洗重复数据,可以使用 duplicated() 和 drop_duplicates() 方法。

duplicated()

如果对应的数据是重复的,duplicated() 会返回 True,否则返回 False。

# 实例 15
import pandas as pd
person = {"name": ['Google', 'Baidu', 'Baidu', 'Taobao'],"age": [50, 40, 40, 23]  
}
df = pd.DataFrame(person)
print(df.duplicated())

drop_duplicates()

删除重复数据,可以直接使用drop_duplicates() 方法。

# 实例 16
import pandas as pdpersons = {"name": ['Google', 'Runoob', 'Runoob', 'Taobao'],"age": [50, 40, 40, 23]  
}df = pd.DataFrame(persons)df.drop_duplicates(inplace = True)
print(df)

后记

今天学习的是Python Pandas 数据清洗学会了吗。 今天学习内容总结一下:

  1. Pandas 数据清洗
  2. Pandas 清洗空值
  3. Pandas替换单元格
  4. Pandas 清洗格式错误数据
  5. Pandas 清洗错误数据
  6. Pandas 清洗重复数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/69617.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

迭代器模式-遍历聚合对象中的元素

在开发中,我们经常使用到Iterator这个接口,我们很疑惑于这个接口的作用,认为集合已经实现了数据访问的方法,增加Iterator的意义在哪。本文我们将学习迭代器模式,用以探讨Iterator的作用。 1.1 迭代器模式概述 提供一…

一生一芯4——使用星火应用商店在ubuntu下载QQ、微信、百度网盘

星火应用商店可以非常方便的完成一些应用的下载,下面是官方网址 http://spark-app.store/download 我使用的是intel处理器,无需下载依赖项,直接点击软件本体 我这里下载amd64,根据自己的处理器下载对应版本 sudo apt install ./spark-stor…

【es6】函数柯里化(Currying)

柯里化(Currying):把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数且返回结果的新函数。 柯里化由 Christopher Strachey 以逻辑学家 Haskell Curry 命名的,它是 Mos…

【Linux操作系统】举例解释Linux系统编程中文件io常用的函数

在Linux系统编程中,文件IO操作是非常常见和重要的操作之一。通过文件IO操作,我们可以打开、读取、写入和关闭文件,对文件进行定位、复制、删除和重命名等操作。本篇博客将介绍一些常用的文件IO操作函数。 文章目录 1. open()1.1 原型、参数及…

Linux 终端命令之文件浏览(2) more

Linux 文件浏览命令 cat, more, less, head, tail,此五个文件浏览类的命令皆为外部命令。 hannHannYang:~$ which cat /usr/bin/cat hannHannYang:~$ which more /usr/bin/more hannHannYang:~$ which less /usr/bin/less hannHannYang:~$ which head /usr/bin/he…

自动化安装系统(一)

系统安装过程 加载boot loader加载启动安装菜单加载内核和initrd文件加载根系统运行anaconda的安装向导 安装光盘中与安装相关的文件 安装autofs启动后会自动出现/misc目录。 在虚拟机设置中添加CD/DVD,使用系统ISO文件,登录系统后mount /dev/cdrom …

css3 瀑布流布局遇见截断下一列展示后半截现象

css3 瀑布流布局遇见截断下一列展示后半截现象 注:css3实现瀑布流布局简直不要太香~~~~~ 场景-在uniapp项目中 当瀑布流布局column-grap:10px 相邻两列之间的间隙为10px,column-count:2,2列展…

实例038 设置窗体在屏幕中的位置

实例说明 在窗体中可以设置窗体居中显示,本例通过设置窗体的Left属性和Top属性可以准确设置窗体的位置。运行本例,效果如图1.38所示。 技术要点 设置窗体在屏幕中的位置,可以通过设置窗体的属性来实现。窗体的Left属性表示窗体距屏幕左侧的…

【javaweb】学习日记Day1 - HTML CSS入门

目录 一、图片标签 ① 绝对路径 1.绝对磁盘路径 2.绝对网络路径 ② 相对路径 (推荐) 二、标题标签 三、水平线标签 四、标题样式 1、CSS引入样式 ① 行内样式 ② 内嵌样式 ③ 外嵌样式 2、CSS选择器 ① 元素选择器 ② id选择器 ③…

产品经理如何突破职业瓶颈,杀出重围?

随着社会的进步和科技的发展,互联网行业从未停止过发展的脚步。而在这个充满机遇和挑战的赛道上,互联网产品经理的角色显得尤为重要。然而,随着互联网产品经理的数量逐年增加,内卷化现象也日益严重。那么,产品经理应该…

GPT内功心法:搜索思维到GPT思维的转换

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

服务器遭受攻击之后的常见思路

哈喽大家好,我是咸鱼 不知道大家有没有看过这么一部电影: 这部电影讲述了男主是一个电脑极客,在计算机方面有着不可思议的天赋,男主所在的黑客组织凭借着超高的黑客技术去入侵各种国家机构的系统,并引起了德国秘密警察…